PDF
Abstract
The band structures, electron density differences, and surface energies of five different BaTiO3 (110) terminations were investigated by first-principles calculations. According to the calculated results of electron density differences, the bonding characteristics of these considered terminations were discussed. The computational results indicate that the BaTiO-terminated surface is metallic, while the O2-, O-, Ba- and TiO-terminated surfaces are all insulative. Furthermore, the computed surface energies suggest that for the considered terminations, the polarity compensation achieved through surface reconstruction or surface defect is more effective than by change in surface electronic structure. The defected or reconstructed terminations predominate over cleavage and construction of BaTiO3 crystal along (110) direction.
Keywords
BaTiO3
/
(110) Polar surface
/
Polar termination
/
Polarity compensation
Cite this article
Download citation ▾
Ying Xie, Haitao Yu.
Electronic properties of BaTiO3 (110) polar terminations.
Chemical Research in Chinese Universities, 2014, 30(5): 794-799 DOI:10.1007/s40242-014-4174-z
| [1] |
Perry C H, Hall D B. Phys. Rev. Lett., 1965, 15: 700.
|
| [2] |
Ding B F, Zhou S Q. Chin. Phys. B, 2011, 20: 127701.
|
| [3] |
Zhang M, Xu Y, Hong Z. Chin. Phys. B, 2005, 14: 995.
|
| [4] |
Liang W Z, Ji Y D, Nan T Z, Huang J, Zeng H Z, Du H, Chen C L, Lin Y. Chin. Phys. B, 2012, 21: 067701.
|
| [5] |
Scott J F, Paz de Araujo C A. Science, 1989, 246: 1400.
|
| [6] |
Otto T, Grafström S, Chaib H, Eng L M. Appl. Phys. Lett., 2004, 84: 1168.
|
| [7] |
Cardona M. Phys. Rev., 1965, 140: A651.
|
| [8] |
Piskunov S, Heifets E, Eglitis R I, Borstel G. Comp. Mater. Sci., 2004, 29: 165.
|
| [9] |
Edwards J W, Speiser R, Johnston H L. J. Am. Chem. Soc., 1951, 73: 2934.
|
| [10] |
Shimitzu T, Bando H, Aiura Y, Haruyama Y, Oka K, Nishihara Y. Jpn. J. Appl. Phys., 1995, 34: L1305.
|
| [11] |
Bando H, Shimitzu T, Aiura Y, Haruyama Y, Oka K, Nishihara Y. J. Vac. Sci. Technol. B, 1996, 14: 1060.
|
| [12] |
Hudson L T, Kurtz R L, Robey S W. Phys. Rev. B, 1993, 47: 10832.
|
| [13] |
Cohen R E. J. Phys. Chem. Solids, 1996, 57: 1393.
|
| [14] |
Heifets E, Dorfman S, Fuks D, Kotomin E. Thin Solid Films, 1997, 296: 76.
|
| [15] |
Padilla J, Vanderbilt D. Phys. Rev. B, 1997, 56: 1625.
|
| [16] |
Corà F, Catlow C R A. Faraday Discuss, 1999, 114: 421.
|
| [17] |
Tasker P W. J. Phys. C: Solid State Phys., 1979, 12: 4977.
|
| [18] |
Noguera C. J. Phys.: Condens. Matter, 2000, 12: R367.
|
| [19] |
Kim D Y, Lee S G, Park Y K, Park S J. Mater. Lett., 1999, 40: 146.
|
| [20] |
Heifets E, Kotomin E A, Maier J. Surf. Sci., 2000, 462: 19.
|
| [21] |
Heifets E, Kotomin E A. Thin Solid Films, 2000, 358: 1.
|
| [22] |
Xie Y, Yu H T, Zhang G X, Fu H G, Sun J Z. J. Phys. Chem. C, 2007, 111: 6343.
|
| [23] |
Hohenberg P, Kohn W. Phys. Rev., 1964, 136: B864.
|
| [24] |
Perdew J P, Wang Y. Phys. Rev. B, 1992, 45: 13244.
|
| [25] |
Hamann D R, Schlüter M. Phys. Rev. Lett., 1979, 43: 1494.
|
| [26] |
Monkhorst H J, Pack J D. Phys. Rev. B, 1976, 13: 5188.
|
| [27] |
Seidl A, Görling A, Vogl P, Majewski J A. Phys. Rev. B, 1996, 53: 3764.
|
| [28] |
Bando H, Aiura Y, Haruyama Y, Shimitzu T, Nishihara Y. J. Vac. Sci. Technol. B, 1995, 13: 1150.
|
| [29] |
Bottin F, Finocchi F, Noguera C. Phys. Rev. B, 2003, 68: 035418.
|
| [30] |
Tanaka H, Kawai T. Surf. Sci., 1996, 365: 437.
|
| [31] |
Brunen J, Zegenhagen J. Surf. Sci., 1997, 389: 349.
|
| [32] |
Hagendorf C, Schindler K M, Doege T, Neddermeyer H. Surf. Sci., 1998, 402–404: 581.
|
| [33] |
Hagendorf Ch, Schindler K M, Doege T, Neddermeyer H. Surf. Sci., 1999, 436: 121.
|
| [34] |
Heifets E, Goddard W A, Kotomin E A, Eglitis R I, Borstel G. Phys. Rev. B, 2004, 69: 035408.
|
| [35] |
Piskunov S, Kotomin E A, Heifets E, Maier J, Eglitis R I, Borstel G. Surf. Sci., 2005, 575: 75.
|
| [36] |
Johnston K, Castell M R, Paxton A T, Finnis M W. Phys. Rev. B, 2004, 70: 085415.
|
| [37] |
Reuter K, Scheffler M. Phys. Rev. B, 2001, 65: 035406.
|