Mechanism of the selective catalytic reduction of NO x with NH3 over W-doped Fe/TiO2 catalyst

Yun Shu , Hongchang Wang , Jinwei Zhu , Fan Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 1005 -1010.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 1005 -1010. DOI: 10.1007/s40242-014-4161-4
Article

Mechanism of the selective catalytic reduction of NO x with NH3 over W-doped Fe/TiO2 catalyst

Author information +
History +
PDF

Abstract

The W-doped Fe/TiO2 catalyst prepared by an impregnation method exhibited a good NH3-selective catalytic reduction(SCR) activity and N2 selectivity with broad operation temperature window. The interaction between Fe and W could increase the amount of surface chemisorbed oxygen, and thus enhances the low temperature SCR activity by facilitating the fast SCR of 2NH3+NO+NO2→2N2+3H2O. The NH3-SCR reaction mechanism over the W-Fe/TiO2 was fully investigated via in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS). In the low temperature range(<250 °C), the reactive surface species were mainly coordinated NH3, ionic NH4 + and adsorbed NO2 species, and the SCR mainly followed the Langmuir-Hinshelwood mechanism, during which the adsorbed NO2 species became the important active sites. In the high temperature range(>250 °C), the reactive surface species were mainly NH2, and the SCR mainly followed the Eley-Rideal mechanism, during which the formation of NH2NO intermediate species after H-abstraction of NH3 was the rate-determining step.

Keywords

Selective catalytic reduction / Iron / Tungsten / Reaction mechanism

Cite this article

Download citation ▾
Yun Shu, Hongchang Wang, Jinwei Zhu, Fan Zhang. Mechanism of the selective catalytic reduction of NO x with NH3 over W-doped Fe/TiO2 catalyst. Chemical Research in Chinese Universities, 2014, 30(6): 1005-1010 DOI:10.1007/s40242-014-4161-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pena D A, Uphade B S, Smirniotis P G. J. Catal., 2004, 221: 421.

[2]

Alemany L J, Berti F, Busca G. Appl. Catal. B, 1996, 10: 299.

[3]

Busca G, Lietti L, Ramis G, Berti F. Appl. Catal. B, 1998, 18: 1.

[4]

Wu B J, Liu X Q, Xiao P. Chem. Res. Chinese Universities, 2009, 25(6): 914.

[5]

Wu B J, Xiao P, Liu X Q. Chem. Res. Chinese Universities, 2010, 26(6): 1002.

[6]

Qi G, Yang R T. Appl. Catal. B, 2003, 44: 217.

[7]

Wu Z B, Jiang B Q. Appl. Catal. B, 2008, 79: 347.

[8]

Apostolescu N, Geiger B, Hizbullah K. Appl. Catal. B, 2006, 62: 104.

[9]

Long R Q, Yang R T. Appl. Catal. B, 2000, 27: 87.

[10]

Long R Q, Yang R T. J. Catal., 1999, 186: 254.

[11]

Chen L, Li J, Ge M. Catal. Today, 2010, 153: 77.

[12]

Lietti L, Nova I, Ramis G, Busca G, Forzatti P. J. Catal., 1999, 187: 419.

[13]

Lietti L, Alemany J L, Bregani F. Catal. Today, 1996, 29: 143.

[14]

Topsøe N Y. Science, 1994, 265: 1217.

[15]

Topsøe N Y, Topsøe H, Dumesic J H. J. Catal., 1995, 151: 226.

[16]

Topsøe N Y, Topsøe H, Dumesic J H. J. Catal., 1995, 151: 241.

[17]

Qi G, Yang R T, Chang R. Appl. Catal. B, 2004, 51: 93.

[18]

Chen L, Li J H, Ge M F. Environ. Sci. Technol., 2010, 44: 9590.

[19]

Kobayashi M, Miyoshi K. Appl. Catal. B, 2007, 72: 253.

[20]

Zhang Q H, Qiu C T, Xu H D, Chen Y Q. Catal. Commun., 2011, 16: 20.

[21]

Granger P, Parvulescu V I. Chem. Rev., 2011, 111: 3155.

[22]

Long R Q, Yang R T. J. Catal., 2002, 207: 274.

[23]

Long R Q, Yang R T. J. Catal., 2002, 207: 224.

[24]

Guan B, Lin H, Zhu L. J. Phys. Chem. C, 2011, 115: 12850.

[25]

Gopalakrishnan S, Jungwirth P, Tobias D J, Allen H C. J. Phys. Chem. B, 2005, 109: 8861.

[26]

Chmielarz L, Kustrowski P, Zbroja M, Datka J, Dziembaj R. Appl. Catal. B, 2004, 53: 47.

[27]

Piazzesi G, Kröcher O, Elsener M, Wokaun A. Appl. Catal. B, 2006, 65: 55.

[28]

Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. J. Catal., 1995, 157: 523.

[29]

Jiang B Q, Wu Z B, Liu Y, Lee S C. J. Phys. Chem. C, 2010, 114: 4961.

[30]

Kijlstra W S, Brands D S, Poels E K, Bliek A. J. Catal., 1997, 171: 208.

[31]

Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Hu T D. Catal. Today, 2011, 175: 18.

[32]

Qi G S, Yang R T. J. Phys. Chem. B, 2004, 108: 15738.

[33]

Zhou G, Zhong B, Wang W. Catal. Today, 2011, 175: 157.

[34]

Wu Z B, Jiang B Q, Liu Y. Environ. Sci. Technol., 2007, 41: 5812.

[35]

Zhang Y M, Zhang H, Zhou L, Han W. Chem. Res. Chinese Universities, 2014, 30(2): 279.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/