Electrochemical reaction mechanism of phenacetin at a carboxylated multiwall carbon nanotube modified electrode and its analytical applications

Jinlei Zhang , Cuiling Lan , Bingfang Shi , Fang Liu , Dandan Zhao , Xuecai Tan

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 905 -909.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 905 -909. DOI: 10.1007/s40242-014-4102-2
Article

Electrochemical reaction mechanism of phenacetin at a carboxylated multiwall carbon nanotube modified electrode and its analytical applications

Author information +
History +
PDF

Abstract

A novel type of carboxylated multiwalled carbon nanotube modified electrode(c-MWCNTs/GCE) was constructed and the electrochemical properties of phenacetin(PHE) at it were studied. In a buffer solution of 0.1 mol/L HAc-NaAc(pH=5.3), PHE exhibited a couple of quasi-reversible redox peaks and an anodic peak in the potential range of 0.2–1.2 V at c-MWCNTs/GCE. The peak current was proportional to the concentration of PHE in the range of 4.0×10−6–1.0×10−4 mol/L with a detection limit of 1.0×10−6 mol/L(S/N=3). The c-MWCNTs/GCE showed excellent repeatability and stability and the electrochemical reaction mechanism of PHE was proposed. This method was used to determine the content of PHE in medical tablets and the recovery was determined to be 96.5%–104.2% by means of a standard addition method.

Keywords

Carboxylated multiwalled carbon nanotube / Modified electrode / Phenacetin

Cite this article

Download citation ▾
Jinlei Zhang, Cuiling Lan, Bingfang Shi, Fang Liu, Dandan Zhao, Xuecai Tan. Electrochemical reaction mechanism of phenacetin at a carboxylated multiwall carbon nanotube modified electrode and its analytical applications. Chemical Research in Chinese Universities, 2014, 30(6): 905-909 DOI:10.1007/s40242-014-4102-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima S. Nature, 1991, 354: 56.

[2]

Dresselhaus M S, Dresselhaus G, Eklund P. Science of Fullerenes and Carbon Nanotubes, 1996, New York: Academic Press 461.

[3]

Arvinte A, Westermann A C, Sesay A M, Virtanen V. Sensor Actuat. B: Chem., 2010, 150: 756.

[4]

Desai P B, Srivastava A K. Sensor Actuat. B: Chem., 2012, 169: 341.

[5]

Rosa O M, Ana P, Jordi B, Mireia B, Francisco C. Talanta, 2010, 81: 1593.

[6]

Guo Y J, Guo S J, Fang Y X, Dong S J. Electrochim. Acta, 2010, 55: 3927.

[7]

Zhang J L, Tan X C, Zhao D D, Tan S W, Huang Z W, Mi Y, Huang Z Y. Electrochim. Acta, 2010, 55: 2522.

[8]

Kankuri E, Solatunturi E, Vapaatalo H. Thromb. Res., 2003, 110: 299.

[9]

Otsuka M. Powder Technol., 2004, 141: 244.

[10]

Xu J L, Huang P, Zhang H. Chin. J. Anal. Chem., 2006, 34: 231.

[11]

Jan J, Jiří K, Lucia Z Z, Josef T. J. Pharmaceut. Biomed., 2010, 52: 557.

[12]

El-Kommos M E, Emara K M. Talanta, 1989, 36: 678.

[13]

Eberhart S T, Hatzis A, Rothchild R. J. Pharmaceut. Biomed., 1986, 4: 147.

[14]

Liu X Z, Liu S S, Wu J F, Fang Z L. Anal. Chim. Acta, 1999, 392: 273.

[15]

Song Y, Deng Y, Huang D X, Wen J, Liu Z G, Li F M. J. Ethnopharmacol., 2012, 141: 957.

[16]

Yin H S, Meng X M, Xu Z N, Chen L J, Ai S Y. Anal. Methods, 2012, 4: 1445.

[17]

Bian C L, Zeng Q X, Xiong H Y, Zhang X H, Wang S F. Bioelectrochemistry, 2010, 79: 1.

[18]

Laviron E. J. Electroanal. Chem., 1974, 52: 355.

[19]

Eslam N N, Rainer B, Andries P B, Hjalmar P P. Analyst, 2011, 136: 5064.

[20]

Ugo B, Patrick G, Virginie S, Titouan J L, Véronique F R, Michel K, Serge A, Illa T, Mohammed B. Anal. Bioanal. Chem., 2013, 405: 5817.

[21]

Ugo B, Patrick G, Illa T, Mohammed B. Talanta, 2013, 116: 554.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/