Effect of particle conductivity on Fe-Si composite electrodeposition

Qiong Long , Yunbo Zhong , Tianxiang Zheng , Chunmei Liu

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 811 -816.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 811 -816. DOI: 10.1007/s40242-014-4096-9
Article

Effect of particle conductivity on Fe-Si composite electrodeposition

Author information +
History +
PDF

Abstract

Coatings containing Fe-Si or Si particles were electrodeposited on 3.0%(mass fraction) Si steel sheets. The surface morphology, the cross-section and the silicon content of coating have been investigated, respectively. It was found that the number of particles on the coating surface and cross-section significantly decreased with increasing silicon content in the applied particles, leading to a decrease of the silicon content of coatings. About 10.2% silicon content of coatings deposited with Fe-30%Si particles can be obtained, whereas that for Si particles was only 2.9% at a particle concentration of 100 g/L and current density of 2 A/dm2. This is mainly attributed to the conductivity of applied particles. High conductivity can promote the co-deposition of the particles. With increasing silicon content in the particles, their conductivity decreased sharply, resulting in the decrease of silicon content of coatings. Present work may initiate a new method to modify the particle content of the composite coatings via changing the conductivity of the particles during the composite electrodeposition. In this paper, a possible mechanism was proposed to explain the phenomena.

Keywords

Composite electrodeposition / Conductivity / Fe-Si particle / 6.5% Silicon steel

Cite this article

Download citation ▾
Qiong Long, Yunbo Zhong, Tianxiang Zheng, Chunmei Liu. Effect of particle conductivity on Fe-Si composite electrodeposition. Chemical Research in Chinese Universities, 2014, 30(5): 811-816 DOI:10.1007/s40242-014-4096-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ros-Yanez T, Houbaert Y, Fischer O, Schneider J. IEEE. Trans. Magn., 2001, 37: 2321.

[2]

Fiorillo F. J. Magn. Magn. Mater., 1996, 157: 428.

[3]

Park B H, Kang B S, Bu S D, Noh S D, Lee J, Jo W. Nature, 1999, 401: 682.

[4]

Takada Y, Abe M, Masuda S, Inagaki J. J. Appl. Phys., 1988, 64: 5367.

[5]

Ros-Yanez T, Ruiz D, Barros J, Houbaert Y. J. Alloy. Compd., 2004, 369: 125.

[6]

Bi X F, Tanaka Y, Sato K, Arai K I, Ishiyama K, Yamashiro Y. IEEE. Trans. Magn., 1996, 32: 4818.

[7]

Ninomiya H, Tanaka Y, Hiura A, Takada Y. J. Appl. Phys., 1991, 69: 5358.

[8]

Roy R K, Panda A K, Ghosh M, Mitria A, Ghosh R N. J. Magn. Magn. Mater., 2009, 321: 2865.

[9]

Yuan W J, Li J G, Shen Q, Zhang L M. J. Magn. Magn. Mater., 2008, 320: 76.

[10]

Tian G K, Bi X F. J. Alloy. Compd., 2010, 502: 1.

[11]

Kasama A H, Bolfarini C, Kiminami C S, Botta Filho W J. J. Mater. Sci. Eng., 2007, 449: 375.

[12]

Haiji H, Okada K, Hiratani T, Abe M, Ninomiya M. J. Mag. Mag. Mater., 1996, 160: 109.

[13]

Choy K L. Prog. Mater. Sci., 2003, 48: 57.

[14]

Yonemochi S, Sugiyama A, Kawamura K, Nagoya T, Aogaki R. J. Appl. Electrochem., 2004, 34: 1279.

[15]

Wang H Z, Zhang P, Zhang W G, Yao S W. Chem. Res. Chinese Universities, 2012, 28(2): 313.

[16]

Popescu A M, Cojocaru A, Donath C C V. Chem. Res. Chinese Universities, 2013, 29(5): 991.

[17]

Popescu A M, Constantin V. Chem. Res. Chinese Universities, 2014, 30(1): 119.

[18]

Hovestad A, Janssen L J J. J. Appl. Electrochem., 1995, 25: 519.

[19]

Aruna S T, Diwakar S, Jain A, Rajam K S. Surf. Eng., 2005, 21: 209.

[20]

Meng X L, Li H Y, Wang J S. Chem. J. Chinese Universities, 2012, 33(5): 1021.

[21]

Erler F, Jakob C, Romanus H, Spiess L, Wielage B, Lampke T, Steinhauser S. Electrochim. Acta, 2003, 48: 3063.

[22]

Gyftou P, Stroumbouli M, Pavlatou E A, Spyrellis N. Trans. Inst. Met. Finish., 2002, 80: 88.

[23]

Zhong Y B, Long Q, Zhou P W, Sun Z Q, Zheng T X. A Method of Preparing High Silicon Steel Trip in Magnetic Field, 2012.

[24]

Sun Z Q, Zhong Y B, Fan L J, Long Q, Zheng T X, Ren W L, Lei Z S, Wang Q L, Wang H, Dai Y M. Acta. Phys. Sin., 2013, 62: 136801.

[25]

Shimoda N. A Method of Surface Treatment Technology for Preparing Good Magnetic Property of Materials, 2012.

[26]

Hives J, Korenko M, Fellner P. Chem.Pap., 2001, 55: 81.

[27]

Zhou P W, Zhong Y B, Wang H, Long Q, Li F, Sun Z Q, Dong L C, Fan L J. Appl. Surf. Sci., 2013, 282: 624.

[28]

Zhou P W, Zhong Y B, Wang H, Fan L J, Dong L C, Li F, Long Q, Zheng T X. Electrochim. Acta, 2013, 111: 126.

[29]

Pan Y J, Zhang H, Wu X J. Plat Fin., 2004, 26: 13.

[30]

Viswanathan M, Ghouse M. Met. Finish., 1979, 77: 67.

[31]

Ghouse M, Viswanathan M, Ramachandran E G. Met. Finish., 1980, 78: 31.

[32]

Long Q, Zhong Y B, Li F, Liu C M, Zhou J F, Fan L J, Li M J. Acta Metal. Sin., 2013, 49: 1201.

[33]

Hu F, Chan K C, Qu N S. J. Solid State Electrochem., 2007, 11: 267.

[34]

Weier T, Eckert K, Muhlenhoff S, Cierpka C, Bund A, Uhlemann M. Electrochem. Commun., 2007, 9: 2479.

[35]

Peipmann R, Thomas J, Bund A. Electrochimica Acta, 2007, 52: 5808.

[36]

Bund A, Koehler S, Kuehnlein H H, Plieth W. Electrochimica Acta, 2003, 49: 147.

[37]

Yamada T, Asai S. J. Jpn. I. Met., 2001, 65: 910.

[38]

Feng Q Y, Li T J, Zhang Z T, Zhang J, Liu M, Jin J. Surf. Coat. Tech., 2007, 201: 6247.

[39]

Wang C, Zhong Y B, Ren W L, Lei Z S, Ren Z M, Jia J, Jiang A R. Appl. Surf. Sci., 2008, 254: 5649.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/