Hg2+-selective fluorescent chemosensor based on cation-π interaction

Huixiao Yang , Qinzhi Hu , Guochun Ma , Guofeng Chen , Minli Tao , Wenqin Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 910 -914.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 910 -914. DOI: 10.1007/s40242-014-4094-y
Article

Hg2+-selective fluorescent chemosensor based on cation-π interaction

Author information +
History +
PDF

Abstract

Two sulphur-containing 4-aminonaphthalimide derivatives were investigated as Hg2+ fluorescent chemosensors. In CH3CN, both sensors present a remarkable fluorescence enhancement to Cu2+ and Fe3+, but a selective fluorescence quenching to Hg2+ among the other metal ions. A cation-π interaction between Hg2+ and the naphthalimide moiety was proposed and confirmed by the density functional theory(DFT).

Keywords

4-Aminonaphthalimide / Fluorescent chemosensor / Cation-π interaction / Hg2+ / Density functional theory (DFT)

Cite this article

Download citation ▾
Huixiao Yang, Qinzhi Hu, Guochun Ma, Guofeng Chen, Minli Tao, Wenqin Zhang. Hg2+-selective fluorescent chemosensor based on cation-π interaction. Chemical Research in Chinese Universities, 2014, 30(6): 910-914 DOI:10.1007/s40242-014-4094-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Silva A P, Gunaratne H N, Gunnlaugsson T, Huxley A J, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97(5): 1515.

[2]

Boening D W. Chemosphere, 2000, 40(12): 1335.

[3]

Benoit J M, Fitzgerald W F, Damman A W H. Environ. Res., 1998, 78(2): 118.

[4]

He S, Liu Q, Li Y, Wei F, Cai S, Lu Y, Zeng X. Chem. Res. Chinese Universities, 2014, 30(1): 32.

[5]

Su W Q, Yang B Q. Chem. Res. Chinese Universities, 2013, 29(4): 657.

[6]

Caballero A, Martínez R, Lloveras V, Ratera I, Vidal-Gancedo J, Wurst K, Tárraga A, Molina P, Veciana J. J. Am. Chem. Soc., 2005, 127(45): 15666.

[7]

Coskun A, Akkaya E U. J. Am. Chem. Soc., 2006, 128(45): 14474.

[8]

Avirah R R, Jyothish K, Ramaiah D. Org. Lett., 2007, 9(1): 121.

[9]

Kim S H, Kim J S, Park S M, Chang S K. Org. Lett., 2006, 8(3): 371.

[10]

Choi M J, Kim M Y, Chang S K. Chem. Commun., 2001, 17: 1664.

[11]

Youn N J, Chang S K. Tetrahedron Lett., 2005, 46(1): 125.

[12]

Moon S Y, Youn N J, Park S M, Chang S K. J. Org. Chem., 2005, 70(6): 2394.

[13]

Cheng Y F, Zhao D T, Zhang M, Liu Z Q, Zhou Y F, Shu T M, Li F Y, Yi T, Huang C H. Tetrahedron Lett., 2006, 47(36): 6413.

[14]

Park S M, Kim M H, Choe J I, No K T, Chang S K. J. Org. Chem., 2007, 72(9): 3550.

[15]

Lee M H, Wu J S, Lee J W, Jung J H, Kim J S. Org. Lett., 2007, 9(13): 2501.

[16]

Wu J S, Hwang I C, Kim K S, Kim J S. Org. Lett., 2007, 9(5): 907.

[17]

Suelter C. Science, 1970, 168(3933): 789.

[18]

McRee D E. Nat. Struct. Biol., 1998, 5: 8.

[19]

Agranoff D D, Krishna S. Mol. Microbiol., 1998, 28(3): 403.

[20]

Pyle A. J. Biol. Inorg. Chem., 2002, 7(7/8): 679.

[21]

Masson E, Schlosser M. Org. Lett., 2005, 7(10): 1923.

[22]

Murayama K, Aoki K. Inorg. Chim. Acta, 1998, 281(1): 36.

[23]

De Wall S L, Meadows E S, Barbour L J, Gokel G W. J. Am. Chem. Soc., 1999, 121(23): 5613.

[24]

Reddy A S, Zipse H, Sastry G N. J. Phys. Chem. B, 2007, 111(39): 11546.

[25]

Zarić S D. Chem. Phys. Lett., 1999, 311(1): 77.

[26]

Lau W, Huffman J C, Kochi J K. J. Am. Chem. Soc., 1982, 104(20): 5515.

[27]

Lau W, Kochi J. J. Org. Chem., 1986, 51(10): 1801.

[28]

Fages F, Desvergne J P, Bouas-Laurent H, Marsau P, Lehn J M, Kotzyba-Hibert F, Albrecht-Gary A M, Al-Joubbeh M. J. Am. Chem. Soc., 1989, 111(23): 8672.

[29]

Ishikawa J, Sakamoto H, Nakao S, Wada H. J. Org. Chem., 1999, 64(6): 1913.

[30]

Yi H B, Lee H M, Kim K S. J. Chem. Theory Comput., 2009, 5(6): 1709.

[31]

Lee S, Lee J H, Pradhan T, Lim C S, Cho B R, Bhuniya S, Kim S, Kim J S. Sens. Actuator B, 2011, 160(1): 1489.

[32]

Xu S, Li W, Chen K C. Chin. J. Chem., 2007, 25(6): 778.

[33]

Guo X F, Zhu B C, Liu Y Y, Zhang Y, Jia L H, Qian X H. Chin. J. Org. Chem., 2006, 26(4): 504.

[34]

Springer C J, Dowell R, Burke P J, Hadley E, Davies D H, Blakey D C, Melton R G, Niculescu-Duvaz I. J. Med. Chem., 1995, 38(26): 5051.

[35]

Tanaka M, Nakamura M, Ikeda T, Ikeda K, Ando H, Shibutani Y, Yajima S, Kimura K. J. Org. Chem., 2001, 66(21): 7008.

[36]

Zhang Z Y, Chen Y H, Xu D M, Yang L, Liu A F. Spectroc. Acta Pt. A, Molec. Biomolec. Spectr., 2013, 105: 8.

[37]

Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett., 1989, 157(3): 200.

[38]

Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37(2): 785.

[39]

Hay P J, Wadt W R. J. Chem. Phys., 1985, 82(1): 270.

[40]

Hay P J, Wadt W R. J. Chem. Phys., 1985, 82(1): 299.

[41]

Hay P J, Wadt W R. J. Chem. Phys., 1985, 82(1): 284.

[42]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr., Vreven T, Kudin K N B J C, Millam J M, Iyengar S S, Tomasi J, Barone V M B, Cossi M, Scalmani G, Rega N, Petersson G A N H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J I M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C J J, Gomperts R, Stratmann R E, Yazyev O, Austin A J C R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K V G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D R K, Foresman J B, Ortiz J V, Cui Q, Baboul A G C S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A P C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, 2004.

[43]

Kuzmič P. Anal. Biochem., 1996, 237(2): 260.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/