A novel thermostable β-galactosidase from Geobacillus kaustophilus HTA42

Shanshan Yu , Hongbing Yin , Xinying Wang , Li Feng , Chunchun Xu , Jing Li , Hongxiang Han , Shuying Liu

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 778 -784.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 778 -784. DOI: 10.1007/s40242-014-4090-2
Article

A novel thermostable β-galactosidase from Geobacillus kaustophilus HTA42

Author information +
History +
PDF

Abstract

A novel thermostable β-galactosidase gene, designated as GkGal1A, from the thermophilic bacterium Geobacillus kaustophilus HTA426 was cloned and heterologously overexpressed in Escherichia coli(E. coli). Based on the sequence analysis, GkGal1A belongs to the glycosyl hydrolase family 1 that was the first β-galactosidase of bacterial origins expressed by us in this family. The apparent molecular weight of GkGal1A determined by sodium deodecyl sulfate-polyacrylamide gel electrophoresis is 52000. It exhibited the highest activity toward p-nitrophenyl-β-D-galactopyranoside at pH 7.8 and 70 °C and displayed high thermal stability. Divalent cations are prerequisite for the activity of GKGal1A, with the highest activity in the presence of Mn2+. Moreover, the three-dimensional structure of GkGal1A was modeled to speculate the structure of the catalytic residues and the reaction mechanism. The catalytic residues consisting of Glu166 and Glu355 were verified by site-directed mutagenesis.

Keywords

Geobacillus kaustophilus HTA426 / β-Galactosidase / Thermostability / Glycoside hydrolase

Cite this article

Download citation ▾
Shanshan Yu, Hongbing Yin, Xinying Wang, Li Feng, Chunchun Xu, Jing Li, Hongxiang Han, Shuying Liu. A novel thermostable β-galactosidase from Geobacillus kaustophilus HTA42. Chemical Research in Chinese Universities, 2014, 30(5): 778-784 DOI:10.1007/s40242-014-4090-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Donkor O N, Henriksson A, Vasiljevic T, Shah N P. Food. Chem., 2007, 104: 10.

[2]

Adam A C, Rubio-Texeira M, Polaina J. Crit. Rev. Food. Sci. Nutr., 2004, 44: 553.

[3]

Husain Q. Crit. Rev. Biotechnol., 2010, 30: 41.

[4]

Lifran E V, Hourigan J A, Sleigh R W, Johnson R L. Food. Aust., 2000, 52: 120.

[5]

Panesar P S, Panesar R, Singh R S, Kennedy J, Kumar H F. J. Chem. Technol. Biotechnol., 2006, 81: 530.

[6]

Li R, Zhang F, Cao S G, Xie G Q, Gao R J. Chem. Res. Chinese Universities, 2012, 28(5): 851.

[7]

Lin L B, Liu Y F, Liu X P, Liu J H. Chem. Res. Chinese Universities, 2012, 28(3): 477.

[8]

Akiyama K, Takase M, Horikoshi K, Okonog S. Biosci. Biotech. Bioch., 2001, 65: 438.

[9]

Cubellis M V, Rozzo C, Montecucchi P, Rossi M. Gene, 1990, 94: 89.

[10]

Hansson T, Adlercreutz P. Biotechnol. Bioeng., 2001, 75: 656.

[11]

Garcia G M, Lopez M A, Barzana E. Biotechnol. Bioeng., 2000, 69: 627.

[12]

Ohtsu N, Motoshima H, Goto K, Tsukasaki F, Matsuzawa H. Biosci. Biotechnol. Biochem., 1998, 62: 1539.

[13]

Petzelbauer I, Splechtna B, Nidetzky B. J. Biochem., 2001, 130: 341.

[14]

Shyamasri B, Arvind M K, Robert S. J. Plant. Physiol., 2003, 160: 327.

[15]

Ulrich J T, McFeters G A, Temple K L. J. Bacteriol., 1972, 110: 691.

[16]

Kim C S, Ji E S, Oh D K. J. Appl. Microbiol., 2004, 97: 1006.

[17]

Priti K, Min Z, Qiao J Y, Zheng Q J, Chun L S, Lite L. Food Chem., 2011, 125: 614.

[18]

Simila J, Gernig A, Murray P, Fernandes S, Tuohy M G. J. Microbiol. Biotechnol., 2010, 20(12): 1653.

[19]

Tie Z Y, Pei L Y, Wang Y R, Kun M, Hui Y L, Wei Z, Ning F W, Yun L F, Bin Y. Biotechnol. Lett., 2008, 30: 343.

[20]

Takami H, Nishi S, Lu J, Shimamura S, Takaki Y. Extremophiles, 2004, 8: 351.

[21]

Li X Y, Zhao K H, Men Y F, Ma J T. Chem. J. Chinese Universities, 1996, 17(10): 1555.

[22]

Bradford M M. Anal. Biochem., 1976, 72: 248.

[23]

Juhász T, Szeltner Z. FEBS. Lett., 2006, 580: 3493.

[24]

Totir M, Echols N, Nanao M, Gee C L, Moskaleva A, Gradia S, Iavarone A T, Berger J M, May A P, Zubieta C, Alber T. PLoS One, 2012, 7(2): e32498.

[25]

Arnold K, Bordoli L, Kopp J, Schwede T. Bioinformatics, 2006, 22: 195.

[26]

Guex N, Peitsch M C. Electrophoresis, 1997, 18: 2714.

[27]

Saisubramanian N, Edwinoliver N G, Nandakumar N, Kamini N R, Puvanakrishnan R. J. Ind. Microbiol. Biotechnol., 2006, 33: 669.

[28]

Schwede T, Kopp J, Guex N, Peitsch M C. Nucleic. Acids. Res., 2003, 31: 3381.

[29]

Laskowski R A, MacArthur M W, Moss D S, Thornton J M. J. Appl. Crystallogr., 1993, 26: 283.

[30]

Yeong S K, Chang S P, Deok K O. Enzyme Microb. Tech., 2006, 39: 903.

[31]

Sławomir D, Gabriela S, Jadwiga M, Jozef S, Jozef K. Protein Expres. Purif., 2000, 19: 107.

[32]

Lauro B D, Rossi M, Moracci M. Extremophiles, 2006, 10: 301.

[33]

Patel G K, Kar B, Sharma A K. Appl. Biochem. Biotechnol., 2012, 166: 523.

[34]

Suzuki H, Okazaki F, Kondo A, Yoshida K I. Appl. Microbiol. Biotechnol., 2012, 97(7): 2929.

[35]

Shaikh S A, Khire J M, Khan M I. Biochimica. et. Biophysica. Acta, 1999, 1472: 314.

[36]

Navneet B, Jagtar S, Uttam C B, Pratap R P, Ranbir C S. Biotechnol. Appl. Biochem., 2002, 36: 1.

[37]

Salam A I, Awfa Y A, Saddam S A, Dan F S, Abolghasem S, Amer A A. Biol. Trace. Elem. Res., 2010, 136: 106.

[38]

Guo X W, Yun G, Bo H, Xiao L L, Xiao Y L, Bing H J. World J. Microbiol. Biotechnol., 2013, 29(8): 1473.

[39]

Li L T, Zhang M, Jiang Z Q, Tang L, Cong Q Q. Food Chem., 2009, 112: 844.

[40]

Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon J P, Davies G. Proc. Natl. Acad. Sci. USA, 1995, 92: 7090.

[41]

Henrissat B, Bairoch A. Biochem. J., 1996, 316: 695.

[42]

Marco B, Stefan B, Andrew W, Konstantin A, Gabriel S, Tobias S, Florian K, Tiziano G C, Martino B, Lorenza B, Torsten S. Nucleic. Acids. Research, 2014, 12: 252.

[43]

Arnold K, Bordoli L, Kopp J, Schwede T. Bioinformatics, 2006, 22: 195.

[44]

Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. Nucleic. Acids Research, 2009, 37: 387.

[45]

Guex N, Peitsch M C, Schwede T. Electrophoresis, 2009, 30: 162.

[46]

Bowie J U, Luthy R, Eisenberg D. Science, 1991, 253: 164.

[47]

Luthy R, Bowie J U, Eisenberg D. Nature, 1992, 356: 83.

[48]

Hidaka M, Fushinobu S, Ohtsu N, Motoshima H, Matsuzawa H, Shoun H, Wakagi T. J. Mol. Biol., 2002, 322: 79.

[49]

Chan M K, Mukund S, Kletzin A, Adams M W, Rees D C. Science, 1995, 267: 1463.

[50]

Russell R J, Hough D W, Danson M J, Taylor G L. Structure, 1994, 2: 1157.

[51]

Daggett V, Levitt M. J. Mol. Biol., 1993, 232: 600.

[52]

Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B. Biophys. Chem., 2006, 119: 256.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/