Theoretical exploration of stereochemical nonrigidity for R fCo(PF3) x(CO)4−x(R f=CF3, C2F5, C3F7, x=0–4)

Tingting Liu , Xi Lu , Mingtao Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (4) : 656 -660.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (4) : 656 -660. DOI: 10.1007/s40242-014-4075-1
Article

Theoretical exploration of stereochemical nonrigidity for R fCo(PF3) x(CO)4−x(R f=CF3, C2F5, C3F7, x=0–4)

Author information +
History +
PDF

Abstract

The stereochemical nonrigidity of R fCo(PF3) x(CO)4−x(R f=CF3, C2F5, C3F7, x=0–4) was studied at the theoretical level of B3LYP/6-311+G* via Gaussian 09. The intramolecular rearrangements in these penta-coordinated compounds are mainly caused by the vibrations of perfluoroalkyl groups. All the barriers along the reaction coordinate are less than 66.9 kJ/mol, which indicates that the rearrangements are kinetically favorable and hard to elucidate by experiment. Besides, ligand PF3 is a ligand similar to CO, the energy difference between the reactant and product is small.

Keywords

Density functional theory(DFT) / Intramolecular rearrangement / Stereochemical nonrigidity / Pentacoordination

Cite this article

Download citation ▾
Tingting Liu, Xi Lu, Mingtao Zhang. Theoretical exploration of stereochemical nonrigidity for R fCo(PF3) x(CO)4−x(R f=CF3, C2F5, C3F7, x=0–4). Chemical Research in Chinese Universities, 2014, 30(4): 656-660 DOI:10.1007/s40242-014-4075-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fang G, Chen S, Li A, Ma J. J. Phys. Chem. C, 2012, 116: 26436.

[2]

Schlecht S, Finze M, Bertermann R, Frank W, Domann A, Braun M. Eur. J. Inorg. Chem., 2013, 1488.

[3]

Franc-ois C, Boddaert T, Durandetti M, Querolle O, Hijfte L V, Meerpoel L, Angibaud P, Maddaluno J. Org. Lett., 2012, 14: 2074.

[4]

Zheng P, Cai Z, Garimallaprabhakaran A, Rooshenas P, Schreiner P R, Harmata M. Eur. J. Org. Chem., 2011, 5255.

[5]

Krenske E H. J. Org. Chem., 2012, 77: 3969.

[6]

Dimukhametov M N, Mironov V F, Krivolapov D B, Litvinov I A, Musin R Z. Mendeleev Commun., 2012, 22: 98.

[7]

López J G, Ramallal A M, González J, Roces L, García-Granda S, Iglesias M J, Oña-Burgos P, Ortiz F L. J. Am. Chem. Soc., 2012, 134: 19504.

[8]

Liu L, Li G, Zhang A, Zeng X, Fu L. Chem. J. Chinese Universities, 1995, 6(3): 395.

[9]

García-Monforte M A, Alonso P J, Ara I, Menjón B, Romero P. Angew. Chem., 2012, 124: 2808.

[10]

Lynam J M. Annu. Rep. Prog. Chem., Sect. A, 2011, 107: 95.

[11]

Press D J, McNeil N M R, Rauk A, Back T G. J. Org. Chem., 2012, 77: 9268.

[12]

Jiang X D, Matsukawa S, Kojima S, Yamamoto Y. Inorg. Chem., 2012, 51: 10996.

[13]

Rzepa H S, Cass M E. Inorg. Chem., 2006, 45: 3958.

[14]

Consiglio G, Failla S, Finocchiaro P, Oliveri I P, Bella S D. Inorg. Chem., 2012, 51: 8409.

[15]

Xu H, Bernskoetter W H. J. Am. Chem. Soc., 2011, 133: 14956.

[16]

Lyaskovskyy V, Elders N, Ehlers A W, Lutz M, Slootweg J C, Lammertsma K. J. Am. Chem. Soc., 2011, 133: 9704.

[17]

Khan R K M, Zhugralin A R, Torker S, O’Brien R V, Lombardi P J, Hoveyda A H. J. Am. Chem. Soc., 2012, 134: 12438.

[18]

Greenfield H, Wotiz J H, Wender I. J. Org. Chem., 1957, 22: 542.

[19]

Heck R F, Breslow D S. J. Am. Chem. Soc., 1961, 83: 4023.

[20]

Jia L, Sun H L, Shay J T, Allgeier A M, Hanton S D. J. Am. Chem. Soc., 2002, 124: 7282.

[21]

Jong T J, Howard A. Macromolecules, 2004, 37: 2417.

[22]

Allmendiger M, Eberhardt R, Luinstra G, Rieger B. J. Am. Chem. Soc., 1996, 118: 111.

[23]

Maricel T, Miquel S, Gernot F. Chem. Rev., 2000, 100: 439.

[24]

Udovich C A, Clark R J. J. Am. Chem. Soc., 1969, 91: 526.

[25]

Udovich C A, Krevalis M A, Clark R J. Inorg. Chem., 1969, 8: 938.

[26]

Udovich C A, Krevalis M A, Clark R J. Inorg. Chem., 1976, 15: 900.

[27]

Berry R S. J. Chem. Phys., 1960, 32: 933.

[28]

Ugi I, Marquarding D, Klusacek H, Gillespie P, Ramirez F. Acc. Chem. Res., 1971, 4: 288.

[29]

Moberg C. Angew. Chem. Int. Ed., 2011, 50: 10290.

[30]

Muetterties E L. J. Am. Chem. Soc., 1969, 91: 1636.

[31]

Muetterties E L. J. Am. Chem. Soc., 1969, 91: 4115.

[32]

Whitesides G M, Mitchell H L. J. Am. Chem. Soc., 1969, 91: 5384.

[33]

Couzijn E P A, Slootweg J C, Ehlers A W, Lammertsma K. J. Am. Chem. Soc., 2010, 132: 18127.

[34]

Dahy A A, Yamada K, Koga N. Organometallics, 2009, 28(13): 3636.

[35]

Hatakeyama T, Hashimoto S, Ishizuka K, Nakamura M. J. Am. Chem. Soc., 2009, 131(33): 11949.

[36]

Liu S, Srinivasan S, Grady M C, Soroush M, Rappe A M. J. Phys. Chem. A, 2012, 116(22): 5337.

[37]

Huo C F, Li Y W, Wu G S, Beller M, Jiao H. J. Phys. Chem. A, 2002, 106: 12161.

[38]

Nagy-Gergely I, Szalontai G, Ungváry F, Markó L, Moret M, Sironi A, Zucchi C, Sisak A, Tschoerner C M, Martinelli A, Sorkau A, Pályi G. Organometallics, 1997, 16(12): 2740.

[39]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision B.01, 2009, Wallingford CT: Gaussian Inc.

[40]

Goh S K, Marynick D S. Organometallics, 2002, 21: 2262.

[41]

Crabtree R H. The Organometallic Chemistry of the Transition Metals, 2009 5th Ed. Weinheim: Wiley-VCH 89.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/