PDF
Abstract
By reacting the unique Keplerate type molybdenum-oxide based polyoxometalate (NH4)42·[Mo132O372·(CH3COO)30(H2O)72]·ca.300H2O·ca.10CH3COONH4(1) with tetramethylammonium bromide, a new derivative (NH4)26[TMA]16{Mo132O372(H2O)72(CH3COO)30}·ca.7NH4CH3COO·ca.189H2O(2, TMA=tetramethylammonium) was prepared. Compound 2 was characterized by Fourier transform infrared spectroscopy(FTIR), UV-Vis, elemental and thermogravimetric analyses. By the well-established Z-scan technique, investigations on the nonlinear optical(NLO) properties of the series of compounds derived from the Keplerate type molybdenum-oxide-based poly-oxometalate, namely, the newly prepared compound 2, the three previously reported compounds, included compound 1, (NH4)18(TBA)24{Mo132O372(H2O)72(CH3COO)30}·ca.7NH4CH3COO·ca.173H2O(3, TBA=tetrabutylammonium) and (DODA)40(NH4)2[(H2O) nMo132O372(CH3COO)30(H2O)72](4, DODA=dimethyldioctadecylammonium), reveal that the third-order nonlinearity[χ (3)] values of compounds 1, 2 and 3 in the DMF/H2O solution and compound 4 in chloroform are almost the same, which indicates that the counter cations with different length of alkyl chains show ignorable impacts on the NLO susceptibility. In other words, the remarkable third-order nonlinearities[χ (3)≈10−19 m2/V2] mainly come from the [Mo132O372(CH3COO)30(H2O)72]42− anions. This fact reveals that the applications of the NLO active polyoxometalates in various environments(such as hydrophilic, hydrophobic, polar, apolar, etc.) can be achieved by simply varying cations to meet the demands in the design of diverse devices.
Keywords
Keplerate type polyoxometalate
/
Nonlinear optical property
/
Z-Scan technique
/
Self-defocusing
/
Reverse saturable absorption
Cite this article
Download citation ▾
Yunshan Zhou, Ningning Qu, Xuan Wang, Lijuan Zhang, Zonghai Shi, ul Sadaf Hassan.
Third-order optical nonlinearities of a series of compounds derived from a Keplerate type molybdenum-oxide-based polyoxometalate.
Chemical Research in Chinese Universities, 2014, 30(5): 715-719 DOI:10.1007/s40242-014-4065-3
| [1] |
Zyss J. Molecular Nonlinear Optics: Materials, Physics and Devices, 1994, Boston: Academic Press 200.
|
| [2] |
Tutt L W, Kost A. Nature, 1992, 356(19): 225.
|
| [3] |
Li X Q, Ma N N, Li X, Zou H Y, Sun S L, Qiu Y Q. Chem. J. Chinese Universities, 2013, 34(1): 135.
|
| [4] |
Liang K, Zheng H G, Song Y L, Lappert M F, Li Y Z, Xin X Q, Huang Z X, Chen J T, Lu S F. Angew. Chem. Int. Ed., 2004, 43(43): 5776.
|
| [5] |
Yi Q S, Zhang W H, Liu S Z, Mei Y H, Xi X Q. Chinese J. Inorg. Chem., 2001, 17(1): 55.
|
| [6] |
Liu C G, Guan W, Yan L K, Su Z M, Song P, Wang E B. J. Phys. Chem. C, 2009, 113(45): 19672.
|
| [7] |
Compain J D, Mialane P, Dolbecq A, Marrot J, Proust A, Nakatani K, Yu P, Sécheresse F. Inorg. Chem., 2009, 48(13): 6222.
|
| [8] |
Yang G C, Guan W, Yan L K, Su Z M, Xu L, Wang E B. J. Phys. Chem. B, 2006, 110(46): 23092.
|
| [9] |
Zhang C, Song Y L, Kuehn F E, Xu Y, Xin X Q, Fun H K, Herrmann W A. Eur. J. Inorg. Chem., 2002, 2002(1): 55.
|
| [10] |
Zhang L J, Zhou Y S, Li Y H. J. Mol. Struct., 2010, 969(1–3): 69.
|
| [11] |
Zhou Y S, Wang E B, Peng J, Liu J, Hu C W, Huang R D, You X Z. Polyhedron., 1999, 18(10): 1419.
|
| [12] |
Casan-Pastor N, Gomez-Romero P. Front. Biosci., 2004, 9: 1759.
|
| [13] |
Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F. Angew. Chem. Int. Ed., 1998, 37(24): 3360.
|
| [14] |
Zhang L J, Zhou Y S, Han R X. Eur. J. Inorg. Chem., 2010, 2010(17): 2471.
|
| [15] |
Zhang L J, Shi Z H, Zhang L H, Zhou Y H, Hassan S. Mater. Lett., 2012, 86(18): 62.
|
| [16] |
Zhou Y S, Shi Z H, Zhang L J, Hassan S, Qu N N. Appl. Phys. A, 2013, 113(3): 563.
|
| [17] |
Zhou Y S, Wang X, Zhang L J. Synthesis and the Third-order Nonlinear Optical Properties of a New Compound Derived from the Keplerate Type Molybdenum-oxide-based Polyoxometalate, 2008.
|
| [18] |
Zhou Y S, Tang W X, Zhang L J, Li Y H. Synthesis and the Third-order Nonlinear Optical Properties of an Organic-inorganic Crystal, 2010.
|
| [19] |
Zhou Y S, Han R X, Zhang L J, Li Y H, Zhang L H. Chem. J. Chinese Universities, 2008, 29(7): 1299.
|
| [20] |
Bahae M S, Said A A, Wei T H, Hagan D J, Stryland E W V. IEEE J. Quantum Electron., 1990, 26(4): 760.
|
| [21] |
Li H P, Shen X P, Han K, Tang G. J. Mol. Model., 2014, 20: 2126.
|
| [22] |
Sun X B, Liu Y Q, Chen S Y, Qiu W F, Yu G, Ma Y Q, Qi T, Zhang H J, Xu X J, Zhu D B. Adv. Funct. Mater., 2006, 16: 917.
|
| [23] |
Yazıcı S, Albayrak, Gümrükçüoğlu İ E E, Gümrükçüoğlu İ E E, Büyükgüngör O. Spectrochimica. Acta. Part A, 2012, 93: 208.
|
| [24] |
Volkmer D, Chesne A D, Kurth D G, Schnablegger H, Lehmann P, Koop M J, Müller A. J. Am. Chem. Soc., 2000, 122(9): 1995.
|
| [25] |
Kurth D G, Lehmann P, Volkmer D, Müller A, Schwahn D. J. Chem. Soc. Dalton. Trans., 2000, 2000(21): 3989.
|
| [26] |
Cazacu A, Mihai S, Nasr G, Mahon E, Lee A V D, Meffre A, Barboiu M. Inorg. Chim. Acta, 2010, 363(15): 4214.
|
| [27] |
Li H L, Yang Y, Wang Y Z, Wang C Y, Li W, Wu L X. Soft Mater., 2011, 7(6): 2668.
|