KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber

Lili Gao , Haiyan Lu , Haibo Lin , Xiuyun Sun , Jianling Xu , Dechen Liu , Yang Li

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 441 -446.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 441 -446. DOI: 10.1007/s40242-014-4059-1
Article

KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber

Author information +
History +
PDF

Abstract

The activated carbon fiber(ACF) was prepared from polyacrylonitrile-based pre-oxidized fiber(PANOF) by KOH direct activation. The influence of activation conditions including impregnation ratio(the mass ratio of PANOF to KOH), activation temperature and activation time on the pore structure and electrochemical properties of ACF was investigated, and the corresponding activation mechanism was proposed. The ACF prepared at an activation temperature of 800 °C and an impregnation ratio(the mass ratio of PANOF to KOH) of 1:2 for an activation time of 1 h in 6 mol/L KOH solution exhibits a specific surface area of 3029 m2/g, a mesoporosity of 84.2% and a specific capacitance of 288 F/g, and shows a good capacitive performance. The prepared ACF can be used as the electrode material for supercapacitors.

Keywords

Direct activation / KOH / Activated carbon fiber / Supercapacitor / Polyacrylonitrile-based pre-oxidized fiber

Cite this article

Download citation ▾
Lili Gao, Haiyan Lu, Haibo Lin, Xiuyun Sun, Jianling Xu, Dechen Liu, Yang Li. KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber. Chemical Research in Chinese Universities, 2014, 30(3): 441-446 DOI:10.1007/s40242-014-4059-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C. J. Mater. Chem. A, 2013, 1: 6037.

[2]

Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y. J. Power Sources, 2010, 195: 2118.

[3]

Kim Y J, Horie Y, Matsuzawa Y, Ozaki S, Endo M, Dresselhaus M S. Carbon, 2004, 42: 2423.

[4]

Zulamita Z B, Francisco C M, Carlos M C. J. Power Sources, 2012, 219: 80.

[5]

Robert A F, Morgan R W, Jud R W. ECS Journal of Solid State Science and Technology, 2013, 10(2): 3170.

[6]

Yoon B J, Jeong S H, Lee K H, Kim H S, Park C G, Han J H. Chemical Physics Letters, 2004, 388: 170.

[7]

El-Kady M F, Strong V, Dubin S, Kaner R B. Science, 2012, 335: 1326.

[8]

Zhang J, Tian T, Chen Y, Niu Y, Tang J, Qin L C. Chemical Physics Letters, 2014, 591: 78.

[9]

Inagaki M. New Carbon Mater., 2009, 24: 193.

[10]

Ma F, Sun L, Zhao H, Li Q, Huo L, Xia T, Gao S. Chem. Res. Chinese Universities, 2013, 29(4): 735.

[11]

Dalton S, Heatley F, Budd P M. Polymer, 1999, 40: 5531.

[12]

Tang M M, Bacon R. Carbon, 1964, 2: 211.

[13]

Maciá-Agulló J A, Moore B C, Cazorla-Amorós D, Linares-Solano A. Carbon, 2004, 42: 1367.

[14]

Babel K, Jurewicz K. J. Physics and Chemistry of Solids, 2004, 65: 275.

[15]

Hirose T, Zhao B, Okabe T, Yoshimura M. J. Mater. Science, 2003, 37: 3453.

[16]

Brunouer S, Emmet P H, Teller E. J. Am. Chem. Soc., 1938, 60: 309.

[17]

Michal K, Mietek J, Yuri B. J. Colloid Interface Sci., 1996, 182: 282.

[18]

Guo H, Gao Q. J. Power Sources, 2009, 186: 551.

[19]

Wang L, Guo Y, Zou B, Rong C, Ma X, Qu Y, Li Y, Wang Z. Bioresource Technology, 2011, 102: 1947.

[20]

Wilhelm R, Bernd S. J. Appl. Crystallogr., 2002, 35: 624.

[21]

Ding L, Zou B, Liu H, Li Y, Wang Z, Su Y, Guo Y, Wang X. Chemical Engineering Journal, 2013, 225: 300.

[22]

Guo Y, Yang S, Yu K, Zhao J, Wang Z, Xu H. Materials Chemistry and Physics, 2002, 74: 320.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/