Theoretical studies on the dihydrogen bonding between shortchain hydrocarbon and magnesium hydride

Li Li , Fuquan Bai , Hongxing Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 831 -836.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 831 -836. DOI: 10.1007/s40242-014-4051-9
Article

Theoretical studies on the dihydrogen bonding between shortchain hydrocarbon and magnesium hydride

Author information +
History +
PDF

Abstract

The C—H…H dihydrogen-bonded complexes of methane, ethylene, acetylene, and their derivatives with magnesium hydride were systematically investigated at MP2/aug-cc-PVTZ level. The results confirm that the strength of dihydrogen bonding increases in the following order of proton donors: C(sp 3)—H<C(sp 2)—H<C(sp)—H and chlorine substituents enhance the C—H…H interaction. In the majority of the complexes with a cyclic structure, the Mg—H proton-accepting bond is more sensitive to the surroundings than C—H proton-donating bond. The nature of the electrostatic interaction in these C—H…H dihydrogen bonds was also unveiled by means of the atoms in molecules(AIM) analysis. The natural bond orbital(NBO) analysis suggests that the charge transfer in the cyclic complexes is characteristic of dual-channel. The direction of the net charge transfer in the cyclic complexes is contrary to that previously found in dihydrogen bonded systems.

Keywords

Dihydrogen bond / Atom in molecule(AIM) theory / Bond critical point / Natural bond orbital(NBO) / Charge transfer

Cite this article

Download citation ▾
Li Li, Fuquan Bai, Hongxing Zhang. Theoretical studies on the dihydrogen bonding between shortchain hydrocarbon and magnesium hydride. Chemical Research in Chinese Universities, 2014, 30(5): 831-836 DOI:10.1007/s40242-014-4051-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang X, Hall M B. J. Am. Chem. Soc., 2009, 131: 10901.

[2]

Cramer C J, Gladfelter W L. Inorg. Chem., 1997, 36: 5358.

[3]

Siegbahn P E M, Eisenstein O, Rheingold A L, Koetzle T F. Acc. Chem. Res., 1996, 29: 348.

[4]

Richardson T B, Koetzle T F, Crabtree R H. Inorg. Chim. Acta, 1996, 250: 69.

[5]

Liu Q, Hoffmann R. J. Am. Chem. Soc., 1995, 117: 10108.

[6]

Kulkarni S A, Srivastava A K. J. Phys. Chem. A, 1999, 103: 2836.

[7]

Braga D, De Leonardis P, Grepioni F, Tedesco E, Calhorda M J. Inorg. Chem., 1998, 37: 3337.

[8]

Kulkarni S A. J. Phys. Chem. A, 1999, 103: 9330.

[9]

Custelcean R, Jackson J E. Chem. Rev., 2001, 101: 1963.

[10]

Alkorta I, Elguero J. Chem. Soc. Rev., 1998, 27: 163.

[11]

Epstein L M, Shubina E S. Coord. Chem. Rev., 2002, 231: 165.

[12]

Xie G B, Sueishi Y, Yamamoto S. Chem. Res. Chinese Universities, 2004, 20(5): 606.

[13]

Liu Z L, Song Y, Du C F. Chem. Res. Chinese Universities, 2012, 28(6): 1066.

[14]

Zierkiewicz W, Hobza P. Phys. Chem. Chem. Phys., 2004, 6: 5288.

[15]

Wu Y, Feng L, Zhang X D. J. Mol. Struct.(Theochem.), 2008, 851: 294.

[16]

Lipkowski P, Grabowski S J, Robinson T L, Leszczynski J. J. Phys. Chem. A, 2004, 108: 10865.

[17]

Cybulski H, Tyminska E, Sadlej J. ChemPhysChem., 2006, 7: 629.

[18]

Robertson K N, Knop O, Cameron T S. Can. J. Chem., 2003, 81: 727.

[19]

Grabowski S J. J. Phys. Chem. A, 2000, 104: 5551.

[20]

Alkorta I, Elguero J, O, Yáñez M, Del Bene J E. J. Phys. Chem. A, 2002, 106: 9325.

[21]

Feng L, Bai F Q, Wu Y, Zhang H X. Mol. Phys., 2011, 109: 645.

[22]

Bogdanović B. Angew. Chem. Int. Ed., 1985, 24: 262.

[23]

Bader R F W. Atoms in Molecules: A Quantum Theory, 1990, New York: Oxford University Press.

[24]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision D.01, 2009, Wallingford CT: Gaussian Inc.

[25]

Grabowski S J, Sokalski W A, Leszczynski J. J. Phys. Chem. A, 2005, 109: 4331.

[26]

Boys S F, Bernardi F. Mol. Phys., 1970, 19: 553.

[27]

Bader R F W. Acc. Chem. Res., 1985, 18: 9.

[28]

Bader R F W. Chem. Rev., 1991, 91: 893.

[29]

Biegler-König F., AIM2000, University of Applied Sciences, Bielefeld

[30]

Reed A E, Curtiss L A, Weinhold F. Chem. Rev., 1988, 88: 899.

[31]

Grabowski S J, Robinson T L, Leszczynski J. Chem. Phys. Lett., 2004, 386: 44.

[32]

Alkorta I, Zborowski K, Elguero J, Solimannejad M. J. Phys. Chem. A, 2006, 110: 10279.

[33]

Alkorta M, Elguero J, Grabowski S J. J. Phys. Chem. A, 2008, 112: 2721.

[34]

Popelier P L A. J. Phys. Chem. A, 1998, 102: 1873.

[35]

Espinosa E, Molins E, Lecomte C. Chem. Phys. Lett., 1998, 285: 170.

[36]

Domagala M, Grabowski S J. Chem. Phys., 2010, 367: 1.

[37]

Chocholousova J, Spirko V, Hobza P. Phys. Chem. Chem. Phys., 2004, 6: 37.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/