Rapid evaluation of individual hydrogen bonding energies in linear water chains

Jiaojiao Hao , Shushi Li , Xiaonan Jiang , Cuiying Huang , Changsheng Wang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 447 -454.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 447 -454. DOI: 10.1007/s40242-014-4047-5
Article

Rapid evaluation of individual hydrogen bonding energies in linear water chains

Author information +
History +
PDF

Abstract

A model is proposed to rapidly evaluate the individual hydrogen bonding energies in linear water chains. We regarded the two O-H bonds of a water molecule as two dipoles. The magnitude of the O-H bond dipole moment can be varied due to the other water molecules’ presence. An analytic potential energy function, which explicitly contains the permanent dipole-dipole interactions, the polarization interactions, the van der Waals interactions and the covalent interactions, was therefore established. The individual hydrogen bonding energies in a series of linear water chains were evaluated via the analytic potential energy function and compared with those obtained from the CP-corrected MP2/aug-cc-pVTZ calculations. The results show that the analytic potential energy function not only can produce the individual hydrogen bonding energies as accurately as the CP-corrected MP2/aug-cc-pVTZ method, but is very efficient as well, demonstrating the model proposed is reasonable and useful. Based on the individual hydrogen bonding energies obtained, the hydrogen bonding cooperativity in the linear water chains was explored and the natures of the hydrogen bonding in these water chains were discussed.

Keywords

Hydrogen bond / Dipole-dipole interaction / Polarization / Covalency / Water chain / Cooperativity

Cite this article

Download citation ▾
Jiaojiao Hao, Shushi Li, Xiaonan Jiang, Cuiying Huang, Changsheng Wang. Rapid evaluation of individual hydrogen bonding energies in linear water chains. Chemical Research in Chinese Universities, 2014, 30(3): 447-454 DOI:10.1007/s40242-014-4047-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeffrey G A. An Introduction to Hydrogen Bond, 1997.

[2]

Chernov A A, Coppens P, Desiiraju G R, Drenth J, Glazer A M, Glusker J P, Helliwell J R. The Weak Hydrogen Bond, 1999.

[3]

Ping Q, Zhi Y Z. Sci. China Chem., 2007, 50: 190.

[4]

Wu Y, Yang Z Z. J. Phys. Chem. A, 2004, 108: 7563.

[5]

Li X, Yang Z Z. J. Phys. Chem. A, 2005, 109: 4102.

[6]

Parthasarathi R, Subramanian V, Sathyamurthy N. J. Phys. Chem. A, 2005, 109: 843.

[7]

Day M B, Kirschner K N, Shields G C. J. Phys. Chem. A, 2005, 109: 6773.

[8]

Bates D M, Tschumper G S. J. Phys. Chem. A, 2009, 113: 3555.

[9]

Sadlej J, Buch V, Kazimirski J K, Buck U. J. Phys. Chem. A, 1999, 103: 4933.

[10]

Neela Y I, Mahadevi A S, Sastry G N. J. Phys. Chem. B, 2010, 114: 17162.

[11]

Yoo S, Aprà E, Zeng X C, Xantheas S S. J. Phys. Chem. Lett., 2010, 1: 3122.

[12]

Lu L N, Liu C, Gong L D. Chem. Res. Chinese Universities, 2013, 29(2): 344.

[13]

Saha B K, Nangia A. Chem. Commun., 2005, 3024.

[14]

Parthasarathi R, Elango M, Subramanian V, Sathyamurthy N. J. Phys. Chem. A, 2009, 113: 3744.

[15]

Ludwig R. Angew. Chem. Int. Ed., 2001, 40: 1808.

[16]

Ludwig R. Angew. Chem. Int. Ed., 2003, 42: 258.

[17]

Moorthy J N, Natarajan R, Venugopalan P. Angew. Chem. Int. Ed., 2002, 41: 3417.

[18]

Custelcean R, Afloroaei C, Vlassa M, Polverejan M. Angew. Chem. Int. Ed., 2000, 39: 3094.

[19]

Kozono D, Yasui M, King L S, Agre P. J. Clin. Invest., 2002, 109: 1395.

[20]

Wang C S, Sun C L. J. Comput. Chem., 2010, 31: 1036.

[21]

Sun C L, Jiang X N, Wang C S. J. Comput. Chem., 2009, 30: 2567.

[22]

Li Y, Wang C S. J. Comput. Chem., 2011, 32: 2765.

[23]

Huang C Y, Li Y, Wang C S. Sci. China Chem., 2013, 56: 238.

[24]

Jiang X N, Wang C S. ChemPhysChem., 2009, 10: 3330.

[25]

Li Y, Jiang X N, Wang C S. J. Comput. Chem., 2011, 32: 953.

[26]

Desiraju G R. Angew. Chem. Int. Ed., 2011, 50: 52.

[27]

Kurczab R, Mitoraj M P, Michalak A, Ziegler T. J. Phys. Chem. A, 2010, 114: 8581.

[28]

Dkhissi A, Houben L, Smets J, Adamowicz L, Maes G. J. Phys. Chem. A, 2000, 104: 9785.

[29]

Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. J. Am. Chem. Soc., 1995, 117: 5179.

[30]

Neria E, Fischer S, Karplus M. J. Chem. Phys., 1996, 105: 1902.

[31]

Nilsson L, Karplus M. J. Comput. Chem., 1986, 7: 591.

[32]

Jorgensen W L, Maxwell D S, Rives J T. J. Am. Chem. Soc., 1996, 118: 11225.

[33]

Kaminski G A, Friesner R A. J. Phys. Chem. B., 2001, 105: 6474.

[34]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision B.02, 2003, Pittsburgh, PA: Gaussian Inc.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/