Sorbent concentration effect on adsorption of methyl orange on chitosan beads in aqueous solutions

Yali Guo , Wanguo Hou , Jiling Liang , Jianqiang Liu

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 837 -843.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 837 -843. DOI: 10.1007/s40242-014-4042-x
Article

Sorbent concentration effect on adsorption of methyl orange on chitosan beads in aqueous solutions

Author information +
History +
PDF

Abstract

The adsorption of methyl orange(MO) on chitosan(CS) beads in aqueous solutions was investigated by a batch equilibration technique. Special emphasis was focused on the effect of sorbent concentration(c s) on the adsorption equilibration of MO on CS beads. An obvious c s-effect was observed in the adsorption equilibration, i.e., the adsorption amount(Γ) was declined with c s increase. The classical Langmuir model adequately described the adsorption isotherm for each given c s. However, it could not be used to predict the c s-effect observed. The applicability of the Langmuir-SCA isotherm, a surface component activity(SCA) model equation, to fit the c s-effect data was examined. In the SCA model, the activity coefficient of sorbent surface sites, $f_{H_2 O}^s $, was assumed to be a function of c s due to the deviation of a real adsorption system from an ideal one, arisen from sorbent particle-particle interactions in real systems. The results show that the Langmuir-SCA isotherm could accurately describe the c s-effect observed under the studied conditions. Furthermore, the effects of temperature(t), pH, and electrolyte(NaNO3) concentration($c_{NaNO_3 } $) on $f_{H_2 O}^s $ were examined. The results show that $f_{H_2 O}^s $ clearly decreased with increasing t(20–35 °C) and pH(5–8), but no obvious change in $f_{H_2 O}^s $ was observed as $c_{NaNO_3 } $ varied in a range 0.001–0.010 mol/L. These results give a better understanding of the c s-effect.

Keywords

Chitosan / Methyl orange / Adsorption / Sorbent concentration effect / Adsorption site activity coefficient

Cite this article

Download citation ▾
Yali Guo, Wanguo Hou, Jiling Liang, Jianqiang Liu. Sorbent concentration effect on adsorption of methyl orange on chitosan beads in aqueous solutions. Chemical Research in Chinese Universities, 2014, 30(5): 837-843 DOI:10.1007/s40242-014-4042-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Forgacs E, Cserhati T, Oros G. Environ. Int., 2004, 30(7): 953.

[2]

Crini G, Badot P M. Prog. Polym. Sci., 2008, 33(4): 399.

[3]

Bhatnagar A, Sillanpää M. Adv. Colloid Interface Sci., 2009, 152(1): 26.

[4]

Nourouzi M M, Chuah T G, Choong T S Y. Water Sci. Technol., 2011, 63(5): 984.

[5]

Sadri Moghaddam S, Alavi Moghaddam M R, Arami M. J. Hazard. Mater., 2010, 175(1): 651.

[6]

Riera-Torres M, Gutiérrez-Bouzán C, Crespi M. Desalination, 2010, 252(1): 53.

[7]

Koyuncu I. J. Chem. Technol. Biotechnol., 2003, 78(12): 1219.

[8]

Ghoneim M M, El-Desoky H S, Zidan N M. Desalination, 2011, 274(1): 22.

[9]

Zanjanchi F, Hadipour N L, Sabzyan H, Beheshtian J. Dyes and Pigments, 2011, 89(1): 16.

[10]

Yavuz Y, Savaş K A, Öğütveren Ü B B. J. Chem. Technol. Biotechnol., 2011, 86(2): 261.

[11]

Wu F C, Tseng R L, Juang R S. J. Hazard. Mater., 2000, 73(1): 63.

[12]

Chiou M S, Li H Y. J. Hazard. Mater., 2002, 93(2): 233.

[13]

Wen Y Z, Liu W Q, Fang Z H, Liu W P. J. Environ. Sci. China, 2005, 17(5): 766.

[14]

Chiou M S, Chuang G S. Chemosphere, 2006, 62(5): 731.

[15]

Morais W A, de Almeida A L P, Pereira M R, Fonseca J L C. Carbohydr. Res., 2008, 343(14): 2489.

[16]

Crini G, Gimbert F, Robert C, Martel B, Adam O, Morin-Crini N, De Giorgi F, Badot P M. J. Hazard. Mater., 2008, 153(1): 96.

[17]

Kittinaovarat S, Kansomwan P, Jiratumnukul N. Appl. Clay. Sci., 2010, 48(1): 87.

[18]

Liu L, Wan Y Z, Xie Y D, Zhai R, Zhang B, Liu J. Chem. Eng. J., 2012, 187: 210.

[19]

Zhang J X, Zhou Q X, Ou L L. J. Chem. Eng. Data, 2011, 57(2): 412.

[20]

Ji J G, Zhang J F, Hao S L, Wu D J, Liu L, Xu Y. Chem. Res. Chinese Universities, 2012, 28(1): 166.

[21]

Zhang C L, Hu X M, Hou X H, Tao Y T. Chem. J. Chinese Universities, 2013, 34(3): 491.

[22]

Bailey S E, Olin T J, Bricka R M, Adrian D D. Water Res., 1999, 33(11): 2469.

[23]

Zhang Q X, Liu H, Xu X Q, Du M X. Chem. J. Chinese Universities, 2012, 33(1): 107.

[24]

O’Connor D J, Connolly J P. Water Res., 1980, 14(10): 1517.

[25]

Voice T C, Weber W J. Environ. Sci. Technol., 1985, 19(9): 789.

[26]

Di Toro D M, Mahony J D, Kirchgraber P R, O’Byrne A L, Pasquale L R, Piccirilll D C. Environ. Sci. Technol., 1986, 20(1): 55.

[27]

Pan G, Liss P S. J. Colloid Interface Sci., 1998, 201(1): 71.

[28]

Helmy A K, Ferreiro E A, de Bussetti S G. J. Colloid Interface Sci., 2000, 225(2): 398.

[29]

Chang T W, Wang M K. Chemosphere, 2002, 48(4): 419.

[30]

Wu X F, Hu Y L, Zhao F, Huang Z Z, Lei D. J. Environ. Sci. China, 2006, 18(6): 1167.

[31]

Fehse K U, Borg H, Sorkau E, Pilchowski K, Luckner L. Water Air Soil Poll., 2010, 210(1/4): 211.

[32]

Zhao L X, Hou W G. Colloids Surf. A, 2012, 396: 29.

[33]

Zhao L X, Song S E, Du N, Hou W G. Colloid Polym. Sci., 2013, 291(3): 541.

[34]

Zhao L X, Song S E, Du N, Hou W G. Acta Phys.-Chim. Sin., 2012, 28(12): 2905.

[35]

Sorokin A B, Quignard F, Valentin R, Mangematin S. Appl. Catal. A: Gen., 2006, 309(2): 162.

[36]

Shen C S, Song S F, Zang L L, Kang X D, Wen Y Z, Liu W P, Fu L S. J. Hazard. Mater., 2010, 177(1): 560.

[37]

Ho Y S. Carbon, 2004, 42(10): 2115.

[38]

Ho Y S. Pol. J. Environ. Stud., 2006, 15(1): 81.

[39]

Zhang S Q. Chin. J. Health Statistics, 2002, 19(1): 9.

[40]

Iraolagoitia X L R, Martini M F. Colloids Surf. B, 2010, 76(1): 215.

[41]

Sheindorf C, Rebhun M, Sheintuch M. J. Colloid Interface Sci., 1981, 79(1): 136.

[42]

Lu Y F, Allen H E. Environ. Pollut., 2006, 143(1): 60.

[43]

Chiou M S, Ho P Y, Li H Y. Dyes. Pigments, 2004, 60(1): 69.

[44]

Huang R H, Liu Q, Huo J, Yang B C. Arab. J. Chem., 2013.

[45]

Kim J Y, Shin M C, Park J R, Nam K. J. Mater. Cycles Waste Manage., 2003, 5(1): 55.

[46]

Hameed B H, El-Khaiary M I. J. Hazard. Mater., 2008, 154(1): 639.

[47]

Xu C, Li W, Pan G. Acta Phys.-Chim. Sin., 2009, 25(9): 1737.

[48]

Saha T K, Karmaker S, Ichikawa H, Fukumori Y. J. Colloid Interface Sci., 2005, 286(2): 433.

[49]

Zhao S P, Zhou F, Li L Y, Cao M J, Zuo D Y, Liu H T. Compos. Part. B: Eng., 2012, 43(3): 1570.

[50]

Uzun I, Güzel F. J. Colloid Interface Sci., 2004, 274(2): 398.

[51]

Morais W A, Fernandes A L P, Dantas T N C, Pereira M R, Fonseca J L C. Colloid Surf. A, 2007, 310(1): 20.

[52]

Chiou M S, Li H Y. Chemosphere, 2003, 50(8): 1095.

[53]

Wang M X, Wang Y P, Tan W F, Liu F, Feng X H, Koopal L K. J. Soil Sediment., 2010, 10(5): 879.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/