Regioselective acylation of 2′- or 3′-hydroxyl group in salicin: Hemisynthesis of acylated salicins

Chen Shao , Yuxin Pei , Anna-Karin Borg-Karlson , Zhichao Pei

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 774 -777.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 774 -777. DOI: 10.1007/s40242-014-4041-y
Article

Regioselective acylation of 2′- or 3′-hydroxyl group in salicin: Hemisynthesis of acylated salicins

Author information +
History +
PDF

Abstract

Salicin-based phenolic glycosides(PGs) are important defensive substances against herbivore feeding and have good bioactivities. In this work, a novel approach for the synthesis of salicin-based PGs has been developed, by which PGs of 2′-O-acetylsalicin(5a), 3′-O-acetylsalicin(5b) and 3′-O-benzoylsalicin(5d) were hemisynthesized. The effects of acylation reagent, solvent and temperature on the regioselective acylation of 2′- or 3′-hydroxyl groups of salicin mediated by dibutyltin oxide were investigated. The optimal conditions under which the best regioselectivity reached for 5a–5d were discovered, respectively. Moreover, a tentative tin-oxygen coordination mechanism was put forward to explain the different regioselectivities shown under different conditions.

Keywords

Regioselective acylation / Salicin / Phenolic glycoside / Tin-oxygen coordination / Hemisynthesis

Cite this article

Download citation ▾
Chen Shao, Yuxin Pei, Anna-Karin Borg-Karlson, Zhichao Pei. Regioselective acylation of 2′- or 3′-hydroxyl group in salicin: Hemisynthesis of acylated salicins. Chemical Research in Chinese Universities, 2014, 30(5): 774-777 DOI:10.1007/s40242-014-4041-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boeckler G A, Gershenzon J, Unsicker S B. Phytochemistry, 2011, 72: 1497.

[2]

Harbourne N, Marete E, Jacquier J C, O’Riordan D. Food Res. Int., 2013, 50: 480.

[3]

Rehill B, Clauss A, Wieczorek L, Whitham T, Lindroth R. Biochem. Syst. Ecol., 2005, 33: 125.

[4]

Srivastava P, Singh V K, Singh B D, Srivastava G, Misra B B, Tripathi V. J. Proteomics Bioinform., 2013, 6(5): 109.

[5]

Ishikawa T, Nishigaya K, Takami K, Uchikoshi H, Chen I S, Tsai I L. J. Nat. Prod., 2004, 67: 659.

[6]

Si C L, Xu J, Kim J K, Bae Y S, Liu P T, Liu Z. Wood Sci. Technol., 2011, 45: 5.

[7]

Han W X, Zhu H J. Chem. J. Chinese Universities, 2013, 34(2): 346.

[8]

Abreu I N, Ahnlund M, Moritz T, Albrectsen B R. J. Chem. Ecol., 2011, 37: 857.

[9]

Clausen T P, Evans T P, Reichandt P B. J. Nat. Prod., 1989, 52(1): 207.

[10]

Picard S, Bouyssou P, Chenault J. Phytochemistry, 1992, 31(8): 2909.

[11]

Pei Z C, Dong H, Ramström O. J. Org. Chem., 2005, 70: 6952.

[12]

Dong H, Pei Z C, Byström S, Ramström O. J. Org. Chem., 2007, 72: 1499.

[13]

Dong H, Zhou Y X, Pan X L, Cui F C, Liu W, Liu J Y, Ramström O. J. Org. Chem., 2012, 77: 1457.

[14]

Grindley T B, Thangarasa R. Can. J. Chem., 1990, 68: 1007.

[15]

Zhang Z, Magnusson G. J. Org. Chem., 1996, 61: 2383.

[16]

Pan X L, Zhou Y X, Liu J Y, Dong H. Chem. Res. Chinese Universities, 2013, 29(3): 551.

[17]

Reichardt P B, Merken H M, Clause T P. J. Nat. Prod., 1992, 55(7): 970.

[18]

Mizuno M, Kato M, Misu C, Linuma M, Tanak T. J. Nat. Prod., 1991, 54(5): 1447.

[19]

Maeda Y, Okawara R. J. Organomet. Chem., 1967, 10: 247.

[20]

Mokal V B, Jain V K. J. Organomet. Chem., 1992, 441: 215.

[21]

Hasha D L. J. Organomet. Chem., 2001, 620: 296.

[22]

Kurahashi T, Mizutani T, Yoshida J. J. Org. Chem., 2002, 58: 8669.

[23]

David S, Thieffry A. Tetrahedron Lett., 1981, 22: 2647.

[24]

Li W, Du W, Li Q, Sun T, Liu D H. J. Mol. Catal. B Enzym., 2010, 63: 17.

[25]

Roelens S. J. Org. Chem., 1996, 61: 5257.

[26]

Zhang Z Y, Wong C H. Tetrahedron, 2002, 58: 6513.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/