Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes

Shurong Wang , Bin Ru , Haizhou Lin , Wuxing Sun , Chunjiang Yu , Zhongyang Luo

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 848 -854.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (5) : 848 -854. DOI: 10.1007/s40242-014-4019-9
Article

Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes

Author information +
History +
PDF

Abstract

The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose) catalyzed by HZSM-5 were investigated. The effects of two different processes by which the catalyst comes into contact with the substrate, namely, mixed with monosaccharide( in-bed) or layered above monosaccharide(in situ), were compared. Evolution characteristics of typical pyrolytic products(H2O, CO2, acids, furans and aromatics) were achieved by thermogravimetry-Fourier transform infrared spectroscopy. The in-bed catalytic process significantly lowered the pyrolytic temperature and increased the production of furans and acids at a low temperature by enhancing dehydration, retro-aldol fragmentation and Grob fragmentation. During the in situ catalytic process, volatiles generated from monosaccharides passed through a catalyst bed and underwent further dehydration, decarboxylation, and decarbonylation, significantly lowering the yields of acids and furans. The yield of aromatics was enhanced, and the corresponding volatilization temperature was lowered, especially under the in-bed catalytic conditions. Pentoses entered into the zeolite pores more easily than hexoses did because of their smaller molecular size; thus, the in-bed catalytic process drastically affected pentose pyrolysis.

Keywords

Hemicellulose / Monosaccharide / TG-FTIR / HZSM-5 / Pyrolysis

Cite this article

Download citation ▾
Shurong Wang, Bin Ru, Haizhou Lin, Wuxing Sun, Chunjiang Yu, Zhongyang Luo. Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes. Chemical Research in Chinese Universities, 2014, 30(5): 848-854 DOI:10.1007/s40242-014-4019-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bridgwater AV. J. Anal. Appl. Pyrol., 1999, 51: 3.

[2]

Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107: 2411.

[3]

Czernik S, Bridgwater A. Energ. Fuel, 2004, 18: 590.

[4]

Mihalcik D J, Mullen C A, Boateng A A. J. Anal. Appl. Pyrol., 2011, 92: 224.

[5]

Bulushev D A, Ross J R. Catal. Today, 2011, 171: 1.

[6]

Taarning E, Osmundsen C M, Yang X, Voss B, Andersen S I, Christensen C H. Energ. Environ. Sci., 2011, 4: 793.

[7]

Stephanidis S, Nitsos C, Kalogiannis K, Iliopoulou E, Lappas A, Triantafyllidis K. Catal. Today, 2011, 167: 37.

[8]

Park H J, Heo H S, Jeon J K, Kim J, Ryoo R, Jeong K E, Park Y K. Appl. Catal. B: Environ., 2010, 95: 365.

[9]

Wang S R, Guo X J, Liang T, Zhou Y, Luo Z Y. Bioresource Technol., 2012, 104: 722.

[10]

Guo X J, Wang S R, Wang K G, Luo Z Y. Chem. Res. Chinese Universities, 2011, 27(3): 426.

[11]

Wang K G, Kim K H, Brown R C. Green Chem., 2014, 16: 727.

[12]

Stöcker M. Angew. Chem. Int. Ed., 2008, 47: 9200.

[13]

Carlson T R, Jae J, Lin Y C, Tompsett G A, Huber G W. J. Catal., 2010, 270: 110.

[14]

Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. J. Catal., 2011, 279: 257.

[15]

Mohan D, Pittman C U, Steele P H. Energ. Fuel, 2006, 20: 848.

[16]

Wang S R, Liang T, Ru B, Guo X J. Chem. Res. Chinese Universities, 2013, 29(4): 782.

[17]

Yang H P, Yan R, Chen H P, Lee D H, Zheng C G. Fuel, 2007, 86: 1781.

[18]

Saha B C. Biotechnol. Adv., 2000, 18: 403.

[19]

Wang S R, Ru B, Lin H Z, Luo Z Y. Bioresource Technol., 2013, 143: 378.

[20]

Zhao Y, Pan T, Zuo Y, Guo Q X, Fu Y. Bioresource Technol., 2013, 147: 37.

[21]

Baerlocher C, McCusker L B, Olson D H. Atlas of Zeolite Framework Types, 2007, Amsterdam: Elsevier.

[22]

Yang C Y, Lu X S, Lin W G, Yang X M, Yao J Z. Chem. Res. Chinese Universities, 2006, 22(4): 524.

[23]

Liu Q, Wang S R, Zheng Y, Luo Z Y, Cen K F. J. Anal. Appl. Pyrol., 2008, 82: 170.

[24]

Bassilakis R, Carangelo R, Wojtowicz M. Fuel, 2001, 80: 1765.

[25]

Räisänen U, Pitkänen I, Halttunen H, Hurtta M. J. Therm. Anal. Calorim., 2003, 72: 481.

[26]

Zhang M H, Geng Z F, Yu Y Z. Energ. Fuel, 2011, 25: 2664.

[27]

Guler L P, Yu Y Q, Kenttämaa H I. J. Phys. Chem. A, 2002, 106: 6754.

[28]

Saka S. Wood and Cellulosic Chemistry, 2000, New York: Marcel Dekker 51.

[29]

Palmqvist E, Hahn-Hägerdal B. Bioresource Technol., 2000, 74: 25.

[30]

Ponder G R, Richards G N. Carbohyd. Res., 1991, 218: 143.

[31]

Carlson T R, Vispute T P, Huber G W. ChemSusChem, 2008, 1: 397.

[32]

Gayubo A G, Aguayo A T, Atutxa A, Aguado R, Olazar M, Bilbao J. Ind. Eng. Chem. Res., 2004, 43: 2619.

[33]

van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem. Rev., 2013, 113: 1499.

[34]

Vinu R, Broadbelt L J. Energ. Environ. Sci., 2012, 5: 9808.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/