Theoretical calculations of the pK a values of 1-aryl-4-propylpiperazine drugs in aqueous solution

Linlin Fan , Xin Yang , Zhiyue Tian , Xuekun Zhao , Ruixiang Li , Ying Xue

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 455 -460.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 455 -460. DOI: 10.1007/s40242-014-4012-3
Article

Theoretical calculations of the pK a values of 1-aryl-4-propylpiperazine drugs in aqueous solution

Author information +
History +
PDF

Abstract

Theoretical calculations were carried out to predict the aqueous-phase acidities of a series of drug 1-phenyl-4-propylpiperazine and its derivatives. The performances of the density functional theory(DFT) methods B3LYP and B3P86, solvation models[the polarized continuum model(PCM) and the conductor-like polarized continuum model(CPCM)], and the basis set effect were tested. A comparison between the theoretical and experimental pK a values for para-substituted 1-phenyl-4-propylpiperazines reveals that the accuracy of B3LYP is better than that of B3P86, and the basis set 6-31++G(d,p) and the CPCM model are suitable for calculating pK a values of the substituted 1-phenyl-4-propylpiperazine. For the investigated compounds, a reasonable agreement between the experimental and calculated pK a values was also observed.

Keywords

1-Arylpiperazine / Aqueous pK a / B3LYP / B3P86 / Conductor-like polarized continuum model(CPCM)

Cite this article

Download citation ▾
Linlin Fan, Xin Yang, Zhiyue Tian, Xuekun Zhao, Ruixiang Li, Ying Xue. Theoretical calculations of the pK a values of 1-aryl-4-propylpiperazine drugs in aqueous solution. Chemical Research in Chinese Universities, 2014, 30(3): 455-460 DOI:10.1007/s40242-014-4012-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu J Z, Shen J, Cheng Y Y, Qu H B. Chem. Res. Chinese Universities, 2009, 25(6): 812.

[2]

Zhang H T, Wu D, Zhang L X. Chem. Res. Chinese Universities, 2008, 24(4): 516.

[3]

Lacivita E, Leopoldo M, De Giorgio P, Berardi F, Perrone R. Bioorg. Med. Chem., 2009, 17(3): 1339.

[4]

Avdeef A. Curr. Top. Med. Chem., 2001, 1(75): 277.

[5]

Tauada M, Faust R. Macromol., 2005, 38(12): 4989.

[6]

Soskic V, Joksimovic J. Curr. Med. Chem., 1998, 5(4): 493.

[7]

Rosini M, Bolognesi M L, Giardina D, Minarini A, Tumiatti V, Melchiorre C. Curr. Top. Med. Chem., 2007, 7(2): 147.

[8]

Lopez-Rodriguez M L, Ayala D, Benhamu B, Morbillo M J, Viso A. Curr. Med. Chem., 2002, 9(8): 811.

[9]

Li D M, Huang X Q, Han K L, Zhan C G. J. Am. Chem. Soc., 2011, 133(19): 7416.

[10]

Li D M, Wang Y, Yang C L, Han K L. Dalton Trans., 2009, 291.

[11]

Song K Z, Ma J J, Wang X, Gong P, Zhao Y F. Chem. Res. Chinese Universities, 2014, 30(1): 75.

[12]

Blassco A, Bunton C A, Bunel S, Ibarra C, Moraga E. Cell, 1997, 163(1): 25.

[13]

Poole S K, Patel S, Dehring K, Workman H, Poole C F. J. Chromatogr. A, 2004, 1037(3): 445.

[14]

Lachenwizer A, Li N, Lipkowski J. J. Electroanal. Chem., 2002, 532(1/2): 85.

[15]

Rouhani S, Rezaei R, Sharghi H, Shamsipur M, Rounaghi G. Microchem. J., 1995, 52(1): 22.

[16]

Moghimi A, Alizadeh R, Shokrollahi A, Aghabozorg H, Shamsipur M, Shockravi A. Inorg. Chem., 2003, 42(5): 1616.

[17]

Pliego J R, Riveros J M. J. Phys. Chem. A, 2002, 106(32): 7434.

[18]

Fu Y, Liu L, Li R Q, Liu R, Guo Q X. J. Am. Chem. Soc., 2004, 126(3): 814.

[19]

Samir A, Senior A M. Int. J. Quantum Chem., 2012, 112(3): 683.

[20]

Rayne S, Forest K. J. Mol. Struct.(Theohem.), 2010, 949(3): 60.

[21]

Casasnovas R, Fernandez D, Ortega-Castro J, Frau J, Donoso J, Munoz F T. Theor. Chem. Acc., 2011, 130(1): 1.

[22]

Lu H T, Chen X, Zhan C G. J. Phys. Chem. B, 2007, 111(35): 10599.

[23]

Nagy P I, Maheshwari A, Kim Y W, Messer W S. J. Phys. Chem. B, 2010, 114(1): 349.

[24]

Kiani F, Rostami A A, Sharifi S, Bahadori A, Chaichi M J. J. Chem. Eng. Data, 2010, 55(3): 2732.

[25]

Bahers T L, Adamo C, Ciofini I. Chem. Phys. Lett., 2009, 472(6): 30.

[26]

Sharma I, Kaminski G A. J. Comput. Chem., 2012, 33(30): 2388.

[27]

Khalili F, Henni A, East A L L. J. Mol. Struct.(Theochem.), 2009, 916(1–3): 1.

[28]

Zanganeh J, Altarawneh M, Saraireh I, Namazi S, Zanganeh J. Comput. Theor. Chem., 2013, 1011(2): 21.

[29]

Sastre S, Casasnovas R, Muñoz F, Frau J. Theor. Chem. Acc., 2013, 132(27): 1310.

[30]

Fu Y, Liu L, Li R, Liu R, Guo Q. J. Am. Chem. Soc., 2004, 126(28): 814.

[31]

Magill A M, Cavell K J, Yates B F. J. Am. Chem. Soc., 2004, 126(28): 8717.

[32]

Ochterski J W, Petersson G A, Montgomery J A. J. Chem. Phys., 1996, 104(7): 2598.

[33]

Montgomery J A, Frisch J M J, Ochterski J W, Petersson J A. J. Chem. Phys., 1999, 110(6): 2822.

[34]

Montgomery J A, Frisch M J, Ochterski J W, Petersson G A. J. Chem. Phys., 2000, 112(14): 6532.

[35]

Curtiss L A, Raghavachari K, Redfern P C, Rassolov V, Pople J A. J. Chem. Phys., 1998, 109(18): 7764.

[36]

Baboul A G, Curtiss L A, Redfern P C, Raghavachari K. J. Chem. Phys., 1999, 110(16): 7650.

[37]

Curtiss L A, Redfern P C, Raghavachari K, Rassolov V, Pople J A. J. Chem. Phys., 1999, 110(10): 4703.

[38]

Curtiss L A, Redfern P C, Raghavachari K. J. Chem. Phys., 2007, 127(12): 124105.

[39]

Curtiss L A, Redfern P C, Raghavachari K. J. Chem. Phys., 2007, 126(18): 184108.

[40]

Ho J, Coote M L. Theor. Chem. Acc., 2010, 125(2): 3.

[41]

Liptak M D, Shields G C. J. Am. Chem. Soc., 2001, 123(30): 7314.

[42]

Liptak M D, Gross K C, Seybold P G, Feldgus S, Shields G C. J. Am. Chem. Soc., 2002, 124(22): 6421.

[43]

Murlowska K, Sadlej-Sosnowska N. J. Phys. Chem. A, 2005, 109(25): 5590.

[44]

Mayuri G, Eirik F, Hallvard F. Energy Procedia., 2012, 23(10): 140.

[45]

Camaioni D M, Schwerdtfeger C A. J. Phys. Chem. A, 2005, 109(47): 10795.

[46]

Lim C, Bashford D, Karplus M. J. Phys. Chem., 1991, 95(14): 5610.

[47]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision E.01, 2004, Wallingford CT: Gaussian Inc.

[48]

Becke A D. J. Chem. Phys., 1986, 84(8): 4524.

[49]

Becke A D. J. Chem. Phys., 1994, 100(1): 45.

[50]

Lee C, Yang W, Parr R G. Phys. Rev. B, 1998, 37(2): 785.

[51]

Becke A D. Phys. Rev. A, 1998, 38(6): 3098.

[52]

Perdew J P, Wang Y. Phys. Rev. B, 1992, 45(23): 13244.

[53]

Dunning T H. J. Chem. Phys., 1998, 90(2): 1007.

[54]

Barone V, Cossi M. J. Phys. Chem. A, 2000, 104(46): 10614.

[55]

Miertus S, Scrocco E, Tomasi J. J. Chem. Phys., 1981, 55(10): 117.

[56]

Miertus S, Tomasi J. J. Chem. Phys., 1982, 65(6): 239.

[57]

Cossi M, Barone V, Cammi R, Tomasi J. J. Chem. Phys. Lett., 1996, 255(16): 327.

[58]

Clark T, Chandrasekhar G W, Suitznaael G W, Schleyer P R. J. Comput. Chem., 1983, 4(3): 294.

[59]

Barone V, Cossi M. J. Phys. Chem. A, 1998, 102(11): 1995.

[60]

Ghalami-Choobar B, Dezhampanah H, Nikparsa P, Ghiami-Shomami A. Int. J. Quantum Chem., 2012, 112: 2275.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/