DDQ/TFA: an efficient nonmetallic reagent system for the oxidative coupling to construct phenanthrene rings

Ling Li , Yanna Hu , Kailiang Wang , Qingmin Wang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (4) : 619 -623.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (4) : 619 -623. DOI: 10.1007/s40242-014-3561-9
Article

DDQ/TFA: an efficient nonmetallic reagent system for the oxidative coupling to construct phenanthrene rings

Author information +
History +
PDF

Abstract

A mild synthetic method of a series of phenanthrenes with different substituents on the phenanthrene ring is described. The method involves intramolecular oxidative coupling with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)/trifluoroacetic acid(TFA) as oxidant to produce phenanthrenes in high yields and is fit for large-scale preparation. Furthermore, DDQ can be regenerated by a simple oxidation. The present approach solves a key step for the synthesis of polycyclic structures related to an alkaloid tylophorine.

Keywords

Intramolecular oxidative coupling / 2,3-Dichloro-5,6-dicyanobenzoquinone(DDQ) / 1,2-Diarylethylene; Phenanthrene ring / Alkaloid

Cite this article

Download citation ▾
Ling Li, Yanna Hu, Kailiang Wang, Qingmin Wang. DDQ/TFA: an efficient nonmetallic reagent system for the oxidative coupling to construct phenanthrene rings. Chemical Research in Chinese Universities, 2014, 30(4): 619-623 DOI:10.1007/s40242-014-3561-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Suffness M., Cordell G. A., Ed.: Brossi A., The Alkaloids, Chemistry and Pharmacology, Vol. 25, Academic Press, Orlando, FL, 1985, 3.

[2]

Jin Z, Li Z G, Huang R Q. Nat. Prod. Rep., 2002, 19: 454.

[3]

Fu Y, Lee S K, Min H Y, Lee T, Lee J, Cheng M, Kim S. Bioorg. Med. Chem. Lett., 2007, 17: 97.

[4]

Furstner A, Kennedy J W J. Chem. Eur. J., 2006, 12: 7398.

[5]

Wang K L, M Y, Wang Q M, Huang R Q. Tetrahedron, 2008, 64: 7504.

[6]

Miyaura N, Suzuki A. Chem. Rev., 1995, 95: 2457.

[7]

Taylor E C, Andrade J G, Rall G J H, Mckillop A. J. Am. Chem. Soc., 1980, 102: 6513.

[8]

Bringmann G, Walter R, Weirich R. Angew. Chem. Int. Ed., 1990, 29: 977.

[9]

Feldman K S, Ensel S M. J. Am. Chem. Soc., 1994, 116: 3357.

[10]

Halton B, Maidment A I, Officer D L, Warner J M. Aust. J. Chem., 1984, 37: 2119.

[11]

M Y, Wang K L, Wang Q M, Huang R Q. Chin. J. Chem., 2008, 26: 2241.

[12]

Wang K, Hu Y, Li Z, Wu M, Liu Z, Su B, Yu A, Liu Y, Wang Q. Synthesis, 2010, 7: 1083.

[13]

Zhdankin V V. Chem. Rev., 2008, 108: 5299.

[14]

Su B, Li L, Hu Y, Liu Y, Wang Q. Adv. Synth. Catal., 2012, 354: 383.

[15]

Wang K, Hu Y, Wu M, Li Z, Liu Z, Su B, Yu A, Liu Y, Wang Q. Tetrahedron, 2010, 66: 9135.

[16]

Handoo K L, Gadru K. Curr. Sci., 1986, 55: 920.

[17]

Eberson L, Hartshorn M P, Persson O. J. Chem. Soc., Perkin Trans. 2, 1997, 195.

[18]

Rathore R, Kochi J K. Acta Chem. Scand., 1998, 52: 114.

[19]

Rathore R, Zhu C J, Lindeman S V, Kochi J K. J. Chem. Soc., Perkin Trans. 2, 2000, 1837.

[20]

Zhai L, Shukla R, Wadumethrige S H, Rathore R. J. Org. Chem., 2010, 75: 4748.

[21]

Chen T A, Liu R S. Org. Lett., 2011, 13: 4644.

[22]

Thamatam R, Skraba S L, Johnson R P. Chem. Commun., 2013, 9122.

[23]

Zhai L, Shukla R, Rathore R. Org. Lett., 2009, 11: 3474.

[24]

Walker G N. J. Am. Chem. Soc., 1954, 76: 3999.

[25]

Stomberg R. Acta Cryst., 1995, C51: 2698.

[26]

Jin Z, Wang Q, Huang R. Synth. Commun., 2004, 34: 119.

[27]

Ringold H J, Turner A. Chem. Ind., 1962, 211.

[28]

Brook A G. J. Chem. Soc., 1952, 5040.

[29]

Scott J W, Parrish D R, Bizzarro F T. Org. Prep. Proced. Int., 1977, 9: 91.

[30]

Newman M S, Khanna V K. Org. Prep. Proced. Int., 1985, 17: 422.

[31]

Chauncy B, Gellert E. Aust. J. Chem., 1970, 23: 2503.

[32]

Buckley T F, Henry R. J. Org. Chem., 1983, 48: 4222.

[33]

Hageman L, McNelis E. J. Org. Chem., 1975, 40: 3300.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/