Syntheses, electrochemical behaviors, spectral properties and DFT calculations of two 1,3-dithiole derivatives

Zhigang Niu , Dachao Li , Dong Liu , Dong Xia , Ying Zou , Wei Sun , Gaonan Li

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 425 -430.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 425 -430. DOI: 10.1007/s40242-014-3518-z
Article

Syntheses, electrochemical behaviors, spectral properties and DFT calculations of two 1,3-dithiole derivatives

Author information +
History +
PDF

Abstract

Two new 1,3-dithiole derivatives, 4,4′-{9-[4,5-bis(methylthio)-1,3-dithiol-2-ylidene]-9H-fluorene-2,7-diyl} dipyridine(2a) and 3,3′-{9-[4,5-bis(methylthio)-1,3-dithiol-2-ylidene]-9H-fluorene-2,7-diyl} dipyridine(2b) were synthesized and characterized by Fourier transform infrared(FTIR), 1H NMR, 13C NMR and mass spectroscopies. The crystal structure of compound 2b was also studied. The optimized conformations and molecular orbital diagrams of compounds 2a and 2b were illustrated via density functional theory(DFT). By the time-dependent DFT(TD-DFT) method, electronic absorption spectra of compounds 2a and 2b were predicted and the results achieved were in good agreement with the experimental data. The formation of the cationic radical during the electrochemical oxidation process was also proposed.

Keywords

1,3-Dithiole derivative / Pyridine / X-Ray diffraction / Linear sweep voltammetry / Density functional theory(DFT) calculation

Cite this article

Download citation ▾
Zhigang Niu, Dachao Li, Dong Liu, Dong Xia, Ying Zou, Wei Sun, Gaonan Li. Syntheses, electrochemical behaviors, spectral properties and DFT calculations of two 1,3-dithiole derivatives. Chemical Research in Chinese Universities, 2014, 30(3): 425-430 DOI:10.1007/s40242-014-3518-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coomber A T, Beljonne D, Friend R H, Brédas J L, Charlton A, Robertson N, Underhill A E, Kurmoo M, Day P. Nature, 1996, 380: 144.

[2]

Nakamura T, Akutagawa T, Honda K, Underhill A E, Coomber A T, Friend R H. Nature, 1998, 394: 159.

[3]

Tanaka H, Okano Y, Kobayashi H, Suzuki W, Kobayashi A. Chem. Rev., 2004, 104: 5243.

[4]

Kobayashi H, Cui H B. Chem. Rev., 2004, 104: 5265.

[5]

Okano Y, Zhou B, Tanaka H, Adachi T, Ohishi Y, Takata M, Aoyagi S, Nishibori E, Sakata M, Kobayashi A, Kobayashi H. J. Am. Chem. Soc., 2009, 131: 7169.

[6]

Akutagawa T, Shitagami K, Aonuma M, Noro S, Nakamura T. Inorg. Chem., 2009, 48: 4454.

[7]

Hosseini M W. Acc. Chem. Res., 2005, 3: 313.

[8]

Hosseini M W. CrystEngComm, 2004, 6: 318.

[9]

Baudron S A, Hosseini M W. Inorg. Chem., 2006, 45: 5260.

[10]

Zhu Q Y, Dai J, Jia D X, Cao L H, Lin H H. Eur. J. Inorg. Chem., 2004, 24: 4789.

[11]

Peng Y H, Meng Y F, Hu L, Li Q X, Li Y Z, Zuo J L, You X Z. Inorg. Chem., 2010, 49: 1905.

[12]

Liu W, Chen Y, Wang R, Zhou X H, Zuo J L, You X Z. Organometallics, 2008, 27: 2990.

[13]

González M, Segura J L, Seoane C, Martín N, Garín J, Orduna J, Alcalá R, Villacampa B, Hernández V, Navarrete J T L. J. Org. Chem., 2001, 66: 8872.

[14]

Guo D, Duan C Y, Lu F, Hasegawa Y, Meng Q J, Yanagida S. Chem. Commun., 2004, 13: 1486.

[15]

Balzani V, Juris A. Coord. Chem. Rev., 2001, 211: 97.

[16]

Agilent Technologies Inc.. CrysAlisPro, Version 1.171.36.21, 2012.

[17]

Sheldrick G M. SHELXTL, Version 5.10, 1997, Madsion, Wisconsion: Bruker AXS Inc.

[18]

Dolomanov O V, Puschmann H. Olex 2, Version 1.2.2, 2009, Durham: OlexSys Ltd., Durham University.

[19]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 09, Revision A.01, 2009, Wallingford, CT: Gaussian, Inc.

[20]

Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785.

[21]

Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett., 1989, 157: 200.

[22]

Becke A D. J. Chem. Phys., 1993, 98: 5648.

[23]

Bouguessa S, Gouasmia A K, Golhen S, Ouahab L, Fabre J M. Tetrahedron Lett., 2003, 44: 9275.

[24]

Li G N, Wen D, Jin T, Liao Y, Zuo J L, You X Z. Tetrahedron Lett., 2011, 52: 675.

[25]

Du M, Zhao X J, Li C P. Acta Cryst. E, 2004, 60: o706.

[26]

Laviron E. J. Electroanal. Chem., 1979, 101: 19.

[27]

Sun W, Liu J, Ju X, Zhang L, Qi X, Hui N. Ionics, 2013, 19: 657.

[28]

Laviron E. J. Electroanal. Chem., 1974, 52: 355.

[29]

Wang Q, Wang Y, Liu S, Wang L, Gao F, Sun W. Thin Solid Films, 2012, 520: 4459.

[30]

Wang C, Plsson L O, Batsanov A S, Bryce M R. J. Am. Chem. Soc., 2006, 128: 3789.

[31]

Runge E, Gross E K U. Phys. Rev. Lett., 1984, 52: 997.

[32]

Casida M E, Jamorski C, Casida K C, Salahub D R. J. Chem. Phys., 1998, 108: 4439.

[33]

Cossi M, Rega N, Scalmani G, Barone V. J. Comput. Chem., 2003, 24: 669.

[34]

Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105: 2999.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/