Effect of doped boron on the properties of ZnO thin films prepared by sol-gel spin coating

Bin Wen , Chaoqian Liu , Weidong Fei , Hualin Wang , Shimin Liu , Nan Wang , Weiping Chai

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 509 -512.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 509 -512. DOI: 10.1007/s40242-014-3497-0
Article

Effect of doped boron on the properties of ZnO thin films prepared by sol-gel spin coating

Author information +
History +
PDF

Abstract

Transparent conductive boron-doped ZnO thin films were prepared by sol-gel spin coating method. The effect of doped boron concentration on the properties of the films was systematically discussed. The films were characterized by X-ray diffraction, atomic force microscopy, spectrophotometry, and Hall effect measurement system. All the doped and undoped ZnO films were of a single hexagonal structure, and showed a preferred orientation of (002). The particle size and surface roughness of the films decreased with increased doped boron concentration. All the films exhibited an average transmittance of approximate 90% in visible-light region and an energy gap of about 3.3 eV. The maximum carrier concentration, the highest carrier mobility and the lowest resistivity were observed at a doped boron concentration of 0.5%(molar fraction). Based on these results, we suggested that the saturation concentration of doped boron in ZnO film is 0.5%(molar fraction).

Keywords

Boron-doped ZnO / Sol-gel / Transparent conductive oxide

Cite this article

Download citation ▾
Bin Wen, Chaoqian Liu, Weidong Fei, Hualin Wang, Shimin Liu, Nan Wang, Weiping Chai. Effect of doped boron on the properties of ZnO thin films prepared by sol-gel spin coating. Chemical Research in Chinese Universities, 2014, 30(3): 509-512 DOI:10.1007/s40242-014-3497-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Major S, Kumar S, Bhatanagar M, Chopra K L. Appl. Phys. Lett., 1986, 49(7): 394.

[2]

Yoo J B, Fahrenbruch A L, Bube R H. J. Appl. Phys., 1990, 68(9): 4694.

[3]

Sato H, Minami T, Tamura Y, Takata S, Mouri T, Ogawa N. Thin Solid Films, 1994, 246(1/2): 86.

[4]

Olson D C, Piris J, Collins R T, Shaheen S E, Ginley D S. Thin Solid Films, 2006, 496(1): 26.

[5]

Park S H, Kim S H, Han S W. Nanotechnology, 2007, 18: 055608.

[6]

Zhang T, Dong W, Keeter-Brewer M, Konar S, Njabon R N, Tian Z R. J. Am. Chem. Soc., 2006, 128(33): 10960.

[7]

Zhang T, Dong W, Njabon R N, Varadan V K, Tian Z R. J. Phys. Chem. C, 2007, 111(37): 13691.

[8]

Maldonado A, Tirado-Guerra S, Cazares J M, Olvera M d l L. Thin Solid Films, 2010, 518(7): 1815.

[9]

Wang L, Zheng Y, Li X, Dong W, Tang W, Chen B, Li C, Li X, Zhang T, Xu W. Thin Solid Films, 2011, 519(16): 5673.

[10]

Zhang Y. Inorg. Chem., 1982, 21(11): 3889.

[11]

Jana S, Vuk A S, Mallick A, Orel B, Biswas P K. Mater. Res. Bull., 2011, 46(12): 2392.

[12]

Hu J, Gordon R G. J. Electrochem. Soc., 1992, 139(7): 2014.

[13]

Wenas W W, Yamada A, Takahashi K. J. Appl. Phys., 1991, 70(11): 7119.

[14]

Wenas W W, Yamada A, Konagai M, Takahashi K. Jpn. J. Appl. Phys., 1991, 30: L441.

[15]

Chen X L, Xu B H, Xue J M, Zhao Y, Wei C C, Sun J, Wang Y, Zhang X D, Geng X H. Thin Solid Films, 2007, 515(7/8): 3753.

[16]

Liu X D, Jiang E Y, Li Z Q. J. Appl. Phys., 2007, 102(7): 073708.

[17]

Minami T, Sato H, Nanto H, Takata S. Jpn. J. Appl. Phys., 1985, 24: L781.

[18]

Gao L, Zhang Y, Zhang J M, Xu K W. Appl. Surf. Sci., 2011, 257(7): 2498.

[19]

Faÿ S, Steinhauser J, Oliveira N. Thin Solid Films, 2007, 515(24): 8558.

[20]

Kumar V, Singh R G, Singh F, Purohit L P. J. Alloy. Compd., 2012, 544: 120.

[21]

Kumar V, Singh R G, Purohit L P, Mehra R M. J. Mater. Sci. Technol., 2011, 27(6): 481.

[22]

Tahar R B H, Tahar N B H. J. Mater. Sci., 2005, 40(19): 5285.

[23]

Lin J P, Wu J M. Appl. Phys. Lett., 2008, 92(13): 134103.

[24]

Wen S, Campet G. Chin. J. Appl. Chem., 1996, 13(2): 115.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/