Selective 3,4-polymerization mechanism of isoprene catalyzed by rare earth alkyl complexes

Ying Liu , Cuihong Sun , Xiaofang Li , Shaowen Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 114 -118.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 114 -118. DOI: 10.1007/s40242-014-3483-6
Article

Selective 3,4-polymerization mechanism of isoprene catalyzed by rare earth alkyl complexes

Author information +
History +
PDF

Abstract

The mechanism of selective 3,4-polymerization reaction of isoprene catalyzed by the rare earth lutecium( III) alkyl complexes [2,6-Me2Ph-N-CH2-C(CH2SiMe3)=N-PhMe2-2,6]Lu(CH2SiMe3)2(THF) was investigated by means of the M06/sdd method with solvation effects taken into account. The results show that the structure of the catalyst core remained almost unchanged as the isoprene molecules were alternatively inserted into the complex at two opposite sides. The Gibbs free energies of the coordination complexes, transition state and intermediates indicate that all the isoprene molecules prefer to insert into the complex with the 3,4-polymerization selectivity as catalyzed by the catalyst, which is consistent with the experimental observations. It is found that the insertion reaction of each isoprene is exothermic, which comes mainly from the coordination of the isoprene molecule to the lutecium( III) atom. The solvation effects were confirmed important in predicting the Gibbs free energies of the present reaction system.

Keywords

Isoprene / Polymerization mechanism / Density functional theory study / Rare earth catalyst

Cite this article

Download citation ▾
Ying Liu, Cuihong Sun, Xiaofang Li, Shaowen Zhang. Selective 3,4-polymerization mechanism of isoprene catalyzed by rare earth alkyl complexes. Chemical Research in Chinese Universities, 2014, 30(1): 114-118 DOI:10.1007/s40242-014-3483-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Natta G, Porri L, Carbonaro A, Stoppa G. Makromol. Chem., 1964, 77(126): 114.

[2]

Lehmkuhl H, Čuljković J, Nehl H. Justus Liebigs Annalen der Chem., 1973, 4: 666.

[3]

Arndt S, Okuda J. Adv. Synth. Catal., 2005, 347(2/3): 339.

[4]

Valente A, Zinck P, Vitorino M J, Mortreux A, Visseaux M. J. Polym. Sci. A: Polym. Chem., 2010, 48(21): 4640.

[5]

Dong W M, Yang J H, Pang S F. Chem. J. Chinese Universities, 2000, 21(3): 493.

[6]

Fischbach A, Perdih F, Herdtweck E, Anwander R. Organometallics, 2006, 25(7): 1626.

[7]

Wang D, Li S, Liu X, Gao W, Cui D. Organometallics, 2008, 27(24): 6531.

[8]

Zhang H, Luo Y, Hou Z. Macromolecules, 2008, 41(4): 1064.

[9]

Jitchum V, Perrier S. Macromolecules, 2007, 40(5): 1408.

[10]

Glöckner A, Bannenberg T, Daniliuc C G, Jones P G, Tamm M. Inorg. Chem., 2012, 51(7): 4368.

[11]

Sarazin Y, Liu B, Roisnel T, Maron L, Carpentier J F. J. Am. Chem. Soc., 2011, 133(23): 9069.

[12]

Huang F, Lu G, Zhao L, Li H, Wang Z X. J. Am. Chem. Soc., 2010, 132(35): 12388.

[13]

Schinzel S, Bindl M, Visseaux M, Chermette H. J. Phys. Chem. A, 2006, 110(39): 11324.

[14]

Bonnet F, Visseaux M, Pereira A, Barbier-Baudry D. Macromolecules, 2005, 38(8): 3162.

[15]

Nakajima Y, Hou Z. Organometallics, 2009, 28(24): 6861.

[16]

Li D, Li S, Cui D, Zhang X. Organometallics, 2010, 29(9): 2186.

[17]

K, Cui D. Organometallics, 2010, 29(13): 2987.

[18]

Wang B, Wang D, Cui D, Gao W, Tang T, Chen X, Jing X. Organometallics, 2007, 26(13): 3167.

[19]

Zhang L, Luo Y, Hou Z. J. Am. Chem. Soc., 2005, 127(42): 14562.

[20]

Arndt S, Beckerle K, Zeimentz P M, Spaniol T P, Okuda J. Angew. Chem. Int. Ed., 2005, 44(45): 7473.

[21]

Du G, Wei Y, Ai L, Chen Y, Xu Q, Liu X, Zhang S, Hou Z, Li X. Organometallics, 2011, 30: 160.

[22]

Liu Y, Sun C, Zhang S, Li X. Theor. Chem. Acc., 2013, 132(3): 1341.

[23]

Schultz N E, Zhao Y, Truhlar D G. J. Phys. Chem. A, 2005, 109(19): 4388.

[24]

Schultz N E, Zhao Y, Truhlar D G. J. Phys. Chem. A, 2005, 109(49): 11127.

[25]

Zhao Y, Schultz N E, Truhlar D G. J. Chem. Phys, 2005, 123(16): 161103.

[26]

Zhao Y, Truhlar D G. J. Chem. Theory. Comput., 2008, 4(11): 1849.

[27]

Dolg M, Stoll H, Savin A, Preuss H. Theor. Chim. Acta, 1989, 75(3): 173.

[28]

Dolg M, Stoll H, Preuss H. J. Chem. Phys., 1989, 90(3): 1730.

[29]

Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105(8): 2999.

[30]

Jonas V, Thiel W. J. Chem. Phys., 1995, 102(21): 8474.

[31]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision B.01, 2009, Wallingford CT: Gaussian Inc.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/