Mechanism construction and simulation for high-temperature combustion of n-propylcyclohexane

Junjiang Guo , Jingbo Wang , Xiaoxiao Hua , Zerong Li , Ningxin Tan , Xiangyuan Li

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 480 -488.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 480 -488. DOI: 10.1007/s40242-014-3460-0
Article

Mechanism construction and simulation for high-temperature combustion of n-propylcyclohexane

Author information +
History +
PDF

Abstract

A detailed mechanism covering 545 species and 3105 reactions for high-temperature combustion of n-propylcyclohexane(n-PCH), generated via a mechanism generation program(ReaxGen) developed by our research group, was validated in this study. A semi-detailed mechanism involved with 195 species and 573 reactions and a skeletal mechanism concerned with 108 species and 393 reactions were obtained by means of rate-of-production analysis and path flux analysis(PFA), respectively. In order to validate the reliability of these mechanisms, ignition delay time, laminar flame speed and concentration profiles of important species were simulated with the help of CHEMKIN software. Numerically predicted results of our mechanisms are in very good agreement with available experimental data. Finally, major reaction pathways of n-PCH combustion and important reactions during the combustion process were investigated by reaction pathway analysis and sensitivity analysis, respectively. The results indicate that these mechanisms are reliable for describing the auto-ignition characteristics of n-PCH. These mechanisms would also be helpful to computational fluid dynamics(CFD) for engine design. Moreover, this systematic approach used in our study, which combines mechanism construction, simplification, validation and analysis for n-PCH, may also be employed to construct mechanisms for the high-temperature combustion of other cycloalkanes with one ring.

Keywords

n-Propylcyclohexane / Mechanism reduction / High-temperature combustion / Validation of mechanism

Cite this article

Download citation ▾
Junjiang Guo, Jingbo Wang, Xiaoxiao Hua, Zerong Li, Ningxin Tan, Xiangyuan Li. Mechanism construction and simulation for high-temperature combustion of n-propylcyclohexane. Chemical Research in Chinese Universities, 2014, 30(3): 480-488 DOI:10.1007/s40242-014-3460-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liao Q. Experimental Studies on Autoignition Phenomena of Kerosene and Cracked Kerosene in a Shock Tube, 2009, Hefei: University of Science and Technology of China.

[2]

Ranzi E. Energy Fuels, 2006, 20: 1024.

[3]

Colket M, Edwards T, Williams S, Cernansky N P, Miller D L, Egolfopoulos F, Lindstedt P, Seshadri K, Dryer F L, Law C K, Friend D, Lenhert D B, Pitsch H, Sarofim A, Smooke M, Tsang W. Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels, 2007.

[4]

Farrell J T, Cernansky N P, Dryer F L, Friend D G, Hergart C A, Law C K, McDavid R M, Patel A K, Mueller C J, Pitsch H. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels, 2007

[5]

Silke E J, Pitz W J, Westbrook C K, Ribaucour M. J. Phys. Chem. A, 2007, 111: 3761.

[6]

Maurice L, Edwards T, Griffiths J. Prog. Astronaut. Aeronaut, 2000, 189: 757.

[7]

Curran H J, Gaffuri P, Pitz W J, Westbrook C K. Combust. Flame, 1998, 114: 149.

[8]

Curran H J, Gaffuri P, Pitz W J, Westbrook C K. Combust. Flame, 2002, 129: 253.

[9]

Glaude P A, Conraud V, Fournet R, Battin-Leclerc F, Côme G M, Scacchi G, Dagaut P, Cathonnet M. Energy Fuels, 2002, 16: 1186.

[10]

Blanquart G, Pepiot-Desjardins P, Pitsch H. Combust. Flame, 2009, 156: 588.

[11]

Karwat D M A, Wagnon S W, Wooldridge M S, Westbrook C K. J. Phys. Chem. A, 2012, 116: 12406.

[12]

Sirjean B, Glaude P A, Ruiz-Lopez M F, Fournet R. J. Phys. Chem. A, 2006, 110: 12693.

[13]

Vanden-Eijnden E, Tal F A. J. Chem. Phys., 2005, 123: 184103.

[14]

Huynh L K, Ratkiewicz A, Truong T N. J. Phys. Chem. A, 2006, 110: 473.

[15]

Herbinet O, Sirjean B, Bounaceur R, Fournet R, Battin-Leclerc F, Scacchi G, Marquaire P M. J. Phys. Chem. A, 2006, 110: 11298.

[16]

Muszynska M, Ratkiewicz A, Huynh L K, Truong T N. J. Phys. Chem. A, 2009, 113: 8327.

[17]

Duncan W T, Bell R L, Truong T N. J. Comput. Chem., 1998, 9: 1039.

[18]

Pitz W J, Cernansky N P, Dryer F L, Egolfopoulos F, Farrell J T, Friend D G, Pitsch H. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels, 2007

[19]

Côme G M, Warth V, Glaude P A, Fournet R, Battin-Leclerc F, Scacchi G. Twenty-sixth Symposium(International) on Combustion, 1996, 755.

[20]

Dagaut P, Reuillon M, Cathonnet M. Combust. Sci. Technol., 1994, 95: 233.

[21]

Sirjean B, Buda F, Hakka H, Glaude P A, Fournet R, Warth V, Battin-Leclerc F, Ruiz-Lopez M. Proc. Combust. Inst., 2007, 31: 277.

[22]

Daley S M, Berkowitz A M, Oehlschlaeger M A. Int. J. Chem. Kin., 2008, 40: 624.

[23]

Orme J P, Curran H J, Simmie J M. J. Phys. Chem. A, 2005, 110: 114.

[24]

Zeppieri S, Brezinsky K, Glassman I. Combust. Flame, 1997, 108: 266.

[25]

Vanderover J, Oehlschlaeger A M. Int. J. Chem. Kin., 2009, 41: 82.

[26]

Dubois T, Chaumeix N, Paillard C E. Energy Fuels, 2009, 23: 2453.

[27]

Hong Z, Lam K Y, Davidson D F, Hanson R K. Combust. Flame, 2011, 158: 1456.

[28]

Crochet M, Minetti R, Ribaucour M, Vanhove G. Combust. Flame, 2010, 157: 2078.

[29]

Davis S G, Law C K. Combust. Sci. Technol., 1998, 140: 427.

[30]

Farrell J T, Johnston R J, Androulakis I P. Molecular Structure Effects on Laminar Burning Velocities at Elevated Temperature and Pressure, 2004

[31]

Ji C, Dames E, Sirjean B, Wang H, Egolfopoulos F N. Proc. Combust. Inst., 2011, 33: 971.

[32]

Sirjean B, Dames E, Sheen D A, Egolfopoulos F N, Wang H, Davidson D F, Hanson R K, Pitsch H, Bowman C T, Law C K, Tsang W, Cernansky N P, Miller D L, Violi A, Lindstedt R P. A High-temperature Chemical Kinetic Model of n-Alkane, Cyclohexane, and Methyl-, Ethyl-, n-Propyl-and n-Butyl-cyclohexane Oxidation at High Temperatures, JetSurF version 1.1, 2010.

[33]

Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley A P, Law C K. Prog. Energ. Combus., 2012, 38: 468.

[34]

Granata S, Faravelli T, Ranzi E. Combust. Flame, 2003, 132: 533.

[35]

Cavallotti C, Rota R, Faravelli T, Ranzi E. Proc. Combust. Inst., 2007, 31: 201.

[36]

You X Q, Egolfopoulos F N, Wang H. Proc. Combust. Inst., 2009, 32: 403.

[37]

Hua X X, Wang J B, Wang Q D, Tan N X, Li X Y. Acta Phys-Chim Sin., 2011, 27: 2755.

[38]

Tan N X, Wang J B, Hua X X, Li Z R, Li X Y. Chem. J. Chinese Universities, 2011, 32(2): 341.

[39]

Pousse E, Porter R, Warth V, Glaude P A, Fournet R, Battin-Leclerc F. Combust. Flame, 2010, 157: 75.

[40]

Ristori A, Dagaut P, Sakal A E, Cathonnet M. Combust. Sci. Technol., 2001, 165: 197.

[41]

Dagaut P. J. Phys. Chem. A, 2007, 111: 3992.

[42]

Dagaut P, Bakali A E, Ristori A. Fuel., 2006, 85: 944.

[43]

Bales-Gueret C, Cathonnet M, Boettner J C, Gaillard F. Energy Fuels, 1992, 6: 189.

[44]

Mati K, Ristori A, Gaïl S, Pengloan G, Dagaut P. Proc. Combust. Inst., 2007, 31: 2939.

[45]

Wang H, You X Q, Joshi A V, Davis S G, Laskin A, Egolfopoulos F N, Law C K. USC Mech Version II, High-temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds, 2007.

[46]

Moreac G, Blurock E S, Mauss F. Combust. Sci. Technol., 2006, 178: 2025.

[47]

Muharam Y, Warnatz J. Phys. Chem. Chem. Phys., 2007, 9: 4218.

[48]

Davis S G, Law C K, Wang H. Combust. Flame, 1999, 119: 375.

[49]

Lay T, Bozzelli J W, Dean A M, Ritter E R. J. Phys. Chem., 1995, 99: 14514.

[50]

Benson S W. Thermochemical Kinetics, 1976, 2ndEd.: 19.

[51]

Wang H, Frenklach M. Combust. Flame, 1994, 96: 163.

[52]

Sun W, Chen Z, Gou X, Ju Y. Combust. Flame, 2010, 157: 1298.

[53]

Kee R J, Rupley F M, Miller J A. Chemkin-II: a Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, Report No. SAND89-8009, 1989, Livermore, CA: Sandia National Laboratories.

[54]

Lutz A E, Kee R J, Miller J A. Senkin: a Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Report No. SAND87-8248, 1990, Livermore, CA: Sandia National Laboratories.

[55]

Lu T, Law C K. Proc. Combust. Inst., 2005, 30: 1333.

[56]

Ju Y, Gou X, Sun W, Chen Z. J. Combust. Soc. Jpn., 2009, 51: 200.

[57]

Wang Q D, Fang Y M, Wang F, Li X Y. Combust. Flame, 2012, 159: 91.

[58]

Kee R J, Grcar J F, Smooke M D, Miller J A, Meeks E. Premix: a Fortran Program for Modeling Steady Laminar One-dimensional Premixed Flames, Report No. SAND85-8240, 1985, Livermore, CA: Sandia National Laboratories.

[59]

Chang Y C, Jia M, Liu Y D, Li Y P, Xie M Z. Combust. Flame, 2013, 160: 1315.

[60]

Liu W X, Yang Y, Shao J X, Song W Y, Li X Y, Le J M. Acta Phys-Chim Sin., 2009, 25: 1618.

[61]

Kumar K, Mittal G, Sung C J, Law C K. Combust. Flame, 2008, 153: 343.

AI Summary AI Mindmap
PDF

276

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/