Underwater oil wettability on nanostructured superamphiphobic surface tuned by trapped air layer continuity

Shasha Li , Mingyi Liao , Meihua Jin

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 518 -520.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 518 -520. DOI: 10.1007/s40242-014-3449-8
Article

Underwater oil wettability on nanostructured superamphiphobic surface tuned by trapped air layer continuity

Author information +
History +
PDF

Abstract

When the superamphiphobic meshes are immersed in water, the rough structures on steel wires are filled with air. The nanostructured superamphiphobic surfaces were prepared on the stainless-steel mesh. By adjusting the mesh size of the surface, the continuity of trapped air layer on the superamphiphobic surface underwater could be controlled. Then the underwater oil-wetting behavior on the prepared superamphiphobic mesh was investigated. The oil droplet spread out on the superamphiphobic surface without mesh and exhibited an oil contact angle of about 0° under water. But the oil contact angle formed on the superamphiphobic mesh surfaces and extended with increasing mesh size. We thought the discontinuity of trapped air layer on the surface and the entry of water into interval between the steel wires should be responsible for these behaviors.

Keywords

Underwater / Wettability / Superamphiphobic / Air layer

Cite this article

Download citation ▾
Shasha Li, Mingyi Liao, Meihua Jin. Underwater oil wettability on nanostructured superamphiphobic surface tuned by trapped air layer continuity. Chemical Research in Chinese Universities, 2014, 30(3): 518-520 DOI:10.1007/s40242-014-3449-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun T, Feng L, Gao X, Jiang L. Acc. Chem. Res., 2005, 38: 644.

[2]

Guo H, Jia H, Zeng J, Cong Q, Ren L. Chem. Res. Chinese Universityies, 2013, 29(2): 333.

[3]

Dai C, Gao C, Feng L. Chem. J. Chinese Universities, 2013, 34(9): 2057.

[4]

Barthlott W, Neinhuis C. Planta, 1997, 202: 1.

[5]

Liu M, Wang S, Wei Z, Song Y, Jiang L. Adv. Mater., 2009, 21: 665.

[6]

Wong T S, Kang S H, Tang S K Y, Smythe E J, Hantton B D, Grinthal A, Aizenberg J. Nature, 2011, 477: 443.

[7]

Xue Z, Jiang L. Acta Polym. Sin., 2012, 10: 1091.

[8]

Mamur A. Biofouling, 2006, 22: 107.

[9]

Sun T, Tan H, Fu Q, Jiang L. Small, 2005, 1: 959.

[10]

Chen L, Liu M, Bai H, Chen P, Xia F, Han D, Jiang L. J. Am. Chem. Soc., 2009, 131: 10467.

[11]

McHale G, Newton M I, Shirtcliffe N J. Soft Matter, 2010, 6: 714.

[12]

Lee C, Kim C J. Phys. Rev. Lett., 2011, 106: 014502.

[13]

Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L. Adv. Mater., 2011, 23: 4270.

[14]

Ding C, Zhu Y, Liu M, Feng L, Wan M, Jiang L. Soft Matter, 2012, 8: 9064.

[15]

Wang C F, Tzeng F S, Chen H G, Chang C J. Langmuir, 2012, 28: 10015.

[16]

Mamur A. Langmuir, 2006, 22: 1400.

[17]

Sheng X L, Zhang J H. Physicochem. Eng. Aspects., 2011, 377: 374.

[18]

Bobji M S, Vijay K S, Asthana A, Govardhan R N. Langmuir, 2009, 25: 12120.

[19]

Poetes R, Holtzmann K, Franze K, Steiner U. Phys. Rev. Lett., 2010, 105: 166104.

[20]

Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A, Bohn H F. Adv. Mater., 2010, 22: 2325.

[21]

Jin M, Wang J, Yao X, Liao M, Zhao Y, Jiang L. Adv. Mater., 2011, 23: 2891.

[22]

Jin M, Li S, Wang J, Xue Z, Liao M, Wang S. Chem. Commun., 2012, 48: 11745.

[23]

Jin M, Wang J, Hao Y, Liao M, Zhao Y. Polym. Chem., 2011, 2: 1658.

[24]

Jung Y C, Bhushan B. Langmuir, 2009, 25: 14165.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/