Synthesis and herbicidal activities of novel uracil derivatives containing pyrimidinyl moiety

Leien He , Yingying Wu , Hanyun Zhang , Manyun Liu , Deqing Shi

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 400 -404.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 400 -404. DOI: 10.1007/s40242-014-3439-x
Article

Synthesis and herbicidal activities of novel uracil derivatives containing pyrimidinyl moiety

Author information +
History +
PDF

Abstract

In order to find novel protoporphyrinogen oxidase inhibitors with high efficacy, broad-spectrum activity, and safety to crops, nine title compounds(4a–4i) were designed and synthesized by introducing pyrimidine moiety into the uracil skeleton with commercially herbicide butafenacil as the lead compound. Their structures were confirmed by 1H NMR, IR, mass spectroscopy and elemental analysis. The bioassay results indicate that most of compounds 4 tested exhibit good to excellent herbicidal activities against B. campestris, A. retroflexus, E. crusgalli and D. sanguinalis in pre-emergence treatment at a dose of 1.5 kg/ha(1 ha=104 m2), for example, compound 4i showed 100% inhibition against the four plants tested in pre-emergence treatment at a dose of 1.5 kg/ha. So, this type of skeleton can be used as a valuable lead compound for the further development of a pre-emergent herbicide.

Keywords

Protoporphyrinogen oxidase / Uracil / Pyrimidine / Herbicidal activity

Cite this article

Download citation ▾
Leien He, Yingying Wu, Hanyun Zhang, Manyun Liu, Deqing Shi. Synthesis and herbicidal activities of novel uracil derivatives containing pyrimidinyl moiety. Chemical Research in Chinese Universities, 2014, 30(3): 400-404 DOI:10.1007/s40242-014-3439-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dayan F E, Duke S O. Proceedings of Brighton Crop Protection Conferences-Weeds, 1997, Surrey: British Crop Protection Council 83.

[2]

Duke S O, Dayan F E, Yamamoto M, Duke M V, Reddy K N, Lee H J, Jacobs N J, Jacobs J M. Proceedings of Second International Weed Control Congress, 1996, Copenhagen: International Weed Science Society 775.

[3]

Nandihalli U B, Duke S O. ACS Symp. Ser., 1994, 559: 133.

[4]

Nandihalli U B, Duke M V, Duke S O. Pestic. Biochem. Physiol., 1992, 43: 193.

[5]

Tomlin C D S. The Pesticide Manual, 2006 14th Ed. Hampshire: British Crop Production Council 112.

[6]

Tomlin C D S. The Pesticide Manual, 2006 14th Ed. Hampshire: British Crop Production Council 128.

[7]

Tomlin C D S. The Pesticide Manual, 2006 14th Ed. Hampshire: British Crop Production Council 85.

[8]

Bowe S, Liebl R, Walter H, Holt T, Sievernich B, Patzoldt W. Weed Sci. Soc. Am., 2008, 63: 12.

[9]

Hirai K., Uchida A., Ohno R.; Eds.: Boger P., Wakabayashi K., Hirai K., Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry, Springer-Verlag, Berlin, Heidelberg, 2002, 179.

[10]

Shimizu T J. Pestic. Sci., 1997, 22: 254.

[11]

Tamaru M, Inoue J, Hanai R. J. Agric. Food Chem., 1997, 45: 2777.

[12]

Tamaru M, Takehi T, Masuyama N. Pestic. Sci., 1996, 47: 327.

[13]

Tomlin C D S. The Pesticide Manual, A World Compendium, 2006 14th Ed. Hampshire: British Crop Production Council 911.

[14]

Huang M Z, Zhang Q, Ren Y G, Lei M X, Huang L, Ren J, Yang G F. Chin. J. Org. Chem., 2006, 26: 1539.

[15]

Sting A R, Siegrist U, Studer M, Baumeister P. Preparation of 3-Aryl-uracic Derivative Useful as Herbicide, 1998.

[16]

Tang W, Yu Z H, Shi D Q. Heteroatom Chem., 2010, 21: 148.

[17]

Song H, Mao H Y, Shi D Q. Chin. J. Chem., 2010, 28: 2020.

[18]

Chen X B, Shi D Q, Zhu X F. Chin. J. Chem., 2007, 25: 1854.

[19]

Liu Y X, Wei D G, Zhu Y R, Liu S H, Zhang Y L, Zhao Q Q, Cai B L, Li Y H, Song H B, Liu Y, Wang Y, Huang R Q, Wang Q M. J. Agric. Food Chem., 2008, 56: 204.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/