Solvothermal synthesis, crystal structure and photoluminescent property of a novel 3D [Ca2(HCOO)2(nds)(H2O)2] n

Shuang Wang , Renchun Zhang , Junjie Wang , Lanlan Shen , Ying Zeng , Daojun Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 9 -12.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 9 -12. DOI: 10.1007/s40242-014-3414-6
Article

Solvothermal synthesis, crystal structure and photoluminescent property of a novel 3D [Ca2(HCOO)2(nds)(H2O)2] n

Author information +
History +
PDF

Abstract

A novel calcium(II) metal-organic framework [Ca2(HCOO)2(nds)(H2O)2] n(1) with mixed 1,5-naphthalene-disulfonate sodium salt(1,5-nds) and formate as organic ligands has been obtained under solvothermal conditions. It was found that the µ3- η 2: η 2 bridging mode of HCOO in compound 1 is uncommon. Moreover, the formate, which was in situ formed from N,N′-dimethylformamide, played an important role in the formation of 3D structure. HCOO ligands bridged Ca(II) ions into grid-like layers that were further pillared by the 1,5-nds ligand to form a 3D Ca-based framework. Compound 1 also exhibits a strong blue luminescence at room temperature.

Keywords

Naphthalenedisulfonate / Luminescence property / Metal-organic framework

Cite this article

Download citation ▾
Shuang Wang, Renchun Zhang, Junjie Wang, Lanlan Shen, Ying Zeng, Daojun Zhang. Solvothermal synthesis, crystal structure and photoluminescent property of a novel 3D [Ca2(HCOO)2(nds)(H2O)2] n. Chemical Research in Chinese Universities, 2014, 30(1): 9-12 DOI:10.1007/s40242-014-3414-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tranchemontagne D J, Mendoza-Cortés J L, O’Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1257.

[2]

Paz F A A, Klinowski J, Vilela S M F, Tomé J P C, Cavaleiro J A S, Rocha J. Chem. Soc. Rev., 2012, 41: 1088.

[3]

Zhao J P, Hu B W, Liu F C, Hu X, Zeng Y F, Bu X H. CrystEngComm, 2007, 9: 902.

[4]

Qu X J, Wang S, Zhang D J, Jing X M, Zhang L R, Li G H, Huo Q S, Liu Y L. Chem. Res. Chinese Universities, 2012, 28(4): 581.

[5]

Chen Q, Chang Z, Song W C, Song H, Song H B, Hu T L, Bu X H. Angew. Chem. Int. Ed., 2013, 52: 11550.

[6]

Zhang J P, Zhang Y B, Lin J B, Chen X M. Chem. Rev., 2012, 112: 1001.

[7]

Li Y X, Xue M, Guo L J, Huang L, Chen S R, Qiu S L. Chem. Res. Chinese Universities, 2013, 29(2): 196.

[8]

Cui Y J, Yue Y F, Qiao G D, Chen B L. Chem. Rev., 2012, 112: 1126.

[9]

Zhang W, Xiong R G. Chem. Rev., 2012, 112: 1163.

[10]

Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402: 276.

[11]

Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Science, 2010, 329: 424.

[12]

Chen B L, Wang L B, Xiao Y Q, Fronczek F R, Xue M, Cui Y J, Qian G D. Angew. Chem. Int. Ed., 2009, 48: 500.

[13]

Rocha J, Carlos L D, Almeida Paz F A, Ananias D. Chem. Soc. Rev., 2011, 40: 926.

[14]

Wang K X, Chen J S. Acc. Chem. Res., 2011, 44: 531.

[15]

Banerjee D, Parise J B. Cryst. Growth Des., 2011, 11: 4704.

[16]

Mallick A, Kundu T, Banerjee R. Chem. Commun., 2012, 48: 8829.

[17]

Platero-Prats A E, de la Peña-O’Shea V A, Snejko N, Monge, Gutiérrez-Puebla E. Chem. Eur. J., 2010, 16: 11632.

[18]

Furman J D, Warner A Y, Teat S J, Mikhailovsky A A, Cheetham A K. Chem. Mater., 2010, 22: 2255.

[19]

Volkringer C, Marrot J, Férey G, Loiseau T. Cryst. Growth Des., 2008, 8: 685.

[20]

Williams C A, Blake A J, Wilson C, Hubberstey P, Schröder M. Cryst. Growth Des., 2008, 8: 911.

[21]

Liang P C, Liu H K, Yeh C T, Lin C H, Zima V. Cryst. Growth Des., 2011, 11: 699.

[22]

Kim M K, Bae K L, Ok K M. Cryst. Growth Des., 2011, 11: 930.

[23]

Banerjee D, Zhang Z J, Plonka A M, Li J, Parise J B. Cryst. Growth Des., 2012, 12: 2162.

[24]

Yeh C T, Lin W C, Lo S H, Kao C C, Lin C H, Yang C C. CrystEngComm, 2012, 14: 1219.

[25]

Han L, Qin L, Xu L P, Zhou Y, Sun J L, Zou X D. Chem. Commun., 2013, 49: 406.

[26]

Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Science, 2012, 336: 1018.

[27]

Zheng B, Liang Z Q, Li G H, Huo Q S, Liu Y L. Cryst. Growth Des., 2010, 10: 3405.

[28]

Zheng B, Luo J H, Wang F, Peng Y, Li G H, Huo Q S, Liu Y L. Cryst. Growth Des., 2013, 13: 1033.

[29]

Wang F, Jing X M, Zheng B, Li G H, Zeng G, Huo Q S, Liu Y L. Cryst. Growth Des., 2013, 13: 3522.

[30]

Shimizu G K H, Vaidhyanathan R, Taylor J M. Chem. Soc. Rev., 2009, 38: 1430.

[31]

Cai J W. Coord. Chem. Rev., 2004, 248: 1061.

[32]

Côté A P, Shimizu G K H. Coord. Chem. Rev., 2003, 245: 49.

[33]

Perles J, Snejko N, Iglesias M, Monge M A. J. Mater. Chem., 2009, 19: 6504.

[34]

Côté A P, Shimizu G K H. Chem. Eur. J., 2003, 9: 5361.

[35]

Cao R, J, Batten S R. CrystEngComm, 2008, 10: 784.

[36]

Zhu Z B, Wan W, Deng Z P, Ge Z Y, Huo L H, Zhao H, Gao S. CrystEngComm, 2012, 14: 6675.

[37]

Xie Z L, Xie Y R, Xu G H, Du Z Y, Zhou Z G, Lai W L. Inorg. Chim. Acta, 2012, 384: 117.

[38]

Tai X S, Yin J, Feng Y M, Kong F Y. Chinese J. Inorg. Chem., 2007, 23: 1812.

[39]

Sheldrick G M. SHELXTL-NT, Version5.1, 1997, Madison, WI: Bruker AXS Inc.

[40]

Wang X Y, Gan L, Zhang S W, Gao S. Inorg. Chem., 2004, 43: 4615.

[41]

Liu Q Y, Wang W F, Wang Y L, Shan Z M, Wang M S, Tang J K. Inorg. Chem., 2012, 51: 2381.

[42]

Zhang Y, Guo B B, Li L, Liu S F, Li G. Cryst. Growth Des., 2013, 13: 367.

[43]

Zhang X, Huang Y Y, Zhang M J, Zhang J, Yao Y G. Cryst. Growth Des., 2012, 12: 3231.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/