Enzymatic promiscuity: Escherichia coli BioH esterase-catalysed Aldol reaction and Knoevenagel reaction

Ling Jiang , Hongwei Yu

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 289 -292.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 289 -292. DOI: 10.1007/s40242-014-3401-y
Article

Enzymatic promiscuity: Escherichia coli BioH esterase-catalysed Aldol reaction and Knoevenagel reaction

Author information +
History +
PDF

Abstract

Esterase BioH, which is obligatory for biotin synthesis in Escherichia coli, was found to exhibit a promiscuous ability to catalyse Aldol and Knoevenagel reactions with moderate to good yields. The reaction conditions including organic solvent, molar ratio of ketone to aldehyde, enzyme amount, and reaction time were investigated to evaluate the effect of different reaction conditions on yield. Target compounds were afforded in the best yield of 91.2% for Aldol reaction and 54.7% for Knoevenagel reaction. In addition, because the enzyme could be prepared with a low cost, this protocol could provide an economic route to conduct Aldol and Knoevenagel reactions, which expand the field of enzymatic promiscuity.

Keywords

Escherichia coli BioH esterase / Catalytic promiscuity / Aldol reaction / Knoevenagel reaction

Cite this article

Download citation ▾
Ling Jiang, Hongwei Yu. Enzymatic promiscuity: Escherichia coli BioH esterase-catalysed Aldol reaction and Knoevenagel reaction. Chemical Research in Chinese Universities, 2014, 30(2): 289-292 DOI:10.1007/s40242-014-3401-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koeller K M, Wong C H. Nature, 2001, 409: 232.

[2]

Jiang X J, Hu Y, Jiang L, Gong J H, Huang H. Chem. Res. Chinese Universities, 2013, 29(2): 223.

[3]

Bornscheuer U T, Kazlauskas R J. Angew. Chem. Int. Ed., 2004, 43: 6032.

[4]

Svedendahl M, Hult K, Berglund P. J. Am. Chem. Soc., 2005, 127: 17988.

[5]

Wu W B, Wang N, Xu J M, Wu Q, Lin X F. Chem. Commun., 2005, 2348.

[6]

Li K, He T, Li C, Feng X W, Wang N, Yu X Q. Green Chem., 2009, 11: 777.

[7]

Reetz M T, Mondiere R, Carballeira J D. Tetrahedron Lett., 2007, 48: 1679.

[8]

Tang R C, Guan Z, He Y H, Zhu W. J. Mol. Catal. B: Enzym., 2010, 63: 62.

[9]

Wurtz A. Bull. Soc. Chim. Fr., 1872, 17: 436.

[10]

Knoevenagel E. Ber. Dtsch. Chem. Ges., 1894, 27: 2345.

[11]

Li C, Feng X W, Wang N, Zhou Y J, Yu X Q. Green Chem., 2008, 10: 616.

[12]

López-Iglesias M, Busto E, Gotor V, Gotor-Fernándes V. Adv. Synth. Catal., 2011, 353: 2345.

[13]

Li H H, He Y H, Yuan Y, Guan Z. Green Chem., 2011, 13: 185.

[14]

Hu W, Guan Z, Deng X, He Y H. Biochimie, 2012, 94: 656.

[15]

Wang B, Liu J, Tang X L, Cheng C, Gu J L, Dai L Y, Yu H W. Tetrahedron Lett., 2010, 51: 309.

[16]

Wang B, Tang X L, Liu J, Yu H W. Tetrahedron Lett., 2010, 51: 6360.

[17]

Tang X L, Liu J, Wang B, Yu H W. World J. Microbiol. Biotechnol., 2011, 27: 129.

[18]

Zhang Y, Wang M G, Liang J, Shang Z C. Lett. Org. Chem., 2010, 7: 27.

[19]

Martínez-Castañeda, Rodríguez-Solla H, Concellón C, Amo V D. J. Org. Chem., 2012, 77: 10375.

[20]

Li Z N, Chen X L, Fu Y J, Wang W, Luo M. Res. Chem. Intermed., 2012, 38: 25.

[21]

Yadav J S, Bhunia D C, Singh V K, Srihari P. Tetrahedron Lett., 2009, 50: 2470.

[22]

Liu R D, Zhang J. Eur. J. Chem., 2011, 2: 308.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/