Electrochemistry of CeCl3 in molten LiCl-KCl eutectic

Meng Zhang , Wei Han , Milin Zhang , Yunna Li , Fengyan Zhu , Yun Xue

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 489 -494.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 489 -494. DOI: 10.1007/s40242-014-3399-1
Article

Electrochemistry of CeCl3 in molten LiCl-KCl eutectic

Author information +
History +
PDF

Abstract

The electrochemical properties of CeCl3, dissolved in LiCl-KCl eutectic melt, were investigated by electrochemical techniques, such as cyclic voltammetry and square wave voltammetry on Mo electrode. It was shown that Ce(III) is reduced to Ce(0) based on a three-step mechanism. In a temperature range of 833–923 K, the diffusion coefficient of Ce(III) is lgD Ce(III)= −2.49–1704/T determined by means of the Berzins-Delahay equation with two different expressions under reversible and irreversible conditions. The apparent standard potential of a Ce(III)/Ce(0) red-ox system is $E_{Ce^{3 + } /Ce^0 }^{0*} $=3.551+0.0006132T(K) vs. Cl2/Cl. Some thermochemical properties of CeCl3 solutions were also derived from the electrochemical measurements, such as the enthalpy, entropy, Gibbs free energies and the activity coefficients of Ce(III). The Gibbs free energy of a dilute solution of CeCl3 in this system was determined to be $\Delta G_{CeCl_3 }^{0*} $/(kJ·mol−1)= −1027.9+0.178T(K) And the activity coefficients, $\gamma _{CeCl_3 } $, range between (7.78–9.14)×10−3. Furthermore, the standard rate constant of kinetic reaction was calculated to be (4.94–9.72)×10−3 cm2/s and the reaction was regarded as a quasi-reversible reaction under the present experimental conditions at 833 K.

Keywords

LiCl-KCl eutectic melt / CeCl3 / Standard rate constant / Standard apparent potential / Activity coefficient

Cite this article

Download citation ▾
Meng Zhang, Wei Han, Milin Zhang, Yunna Li, Fengyan Zhu, Yun Xue. Electrochemistry of CeCl3 in molten LiCl-KCl eutectic. Chemical Research in Chinese Universities, 2014, 30(3): 489-494 DOI:10.1007/s40242-014-3399-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gibilaro M, Massot L, Chamelot P, Taxil P. J. Nucl. Mater., 2008, 382: 39.

[2]

Gibilaro M, Massot L, Chamelot P, Cassayre L, Taxil P. Electrochim. Acta, 2009, 54: 5300.

[3]

Yan Y D, Xu Y L, Zhang M L, Xue Y, Han W, Huang Y, Chen Q, Zhang Z J. J. Nucl. Mater., 2013, 433: 152.

[4]

Sun Y, Zhang M L, Han W, Li M, Yang Y S. Chem. Res. Chinese Universities, 2013, 29(2): 324.

[5]

Iizuka M. J. Electrochem. Soc., 1998, 145: 84.

[6]

Chen L J, Zhang M L, Han W, Yan Y D, Cao P. Chem. J. Chinese Universities, 2012, 33(2): 327.

[7]

Castrillejo Y, Hernández P, Rodriguez J A, Vega M, Barrado E. Electrochim. Acta, 2012, 71: 166.

[8]

Tang H, Yan Y D, Zhang M L, Xue Y, Zhang Z J, Du W C, He H. Acta Phys. Chim. Sin., 2013, 29: 1698.

[9]

Marsden K C, Pesic B. J. Electrochem. Soc., 2011, 158: 111.

[10]

Betancourtt R, Nattland D. Chem. Phys., 2005, 7: 173.

[11]

Castrillejo Y, Bermejo M, Millan R, Martínez A, Barrado E, Caravaca C, Arocas P. Progress in Molten Salt Chemistry, 2000, New York: Elsevier.

[12]

Castrillejo Y, Bermejo M R, Pardo R, Martínez A M. J. Electroanal. Chem., 2002, 552: 124.

[13]

Castrillejo Y, Bermejo M R, Barrado E, Martínez A M, Díaz Arocas P. J. Electroanal. Chem., 2003, 545: 141.

[14]

Fusselman S P, Roy J J, Grimmett D L, Grantham L F, Krueger C L, Nabelek C R, Storvick T S, Inoue T, Hijikata T, Kinoshita K, Sakamura Y, Uozumi K, Kawai T, Takahashi N. J. Electrochem. Soc., 1999, 146: 2573.

[15]

Lantelme F, Cartailler T, Berghoute Y, Hamdani M. J. Electrochem. Soc., 2001, 148: C604.

[16]

Kim T, Ahn D H, Paek S W, Jung Y. J. Electrochem. Sci., 2013, 8: 9180.

[17]

Zhang M, Han W, Zhang M L, Zhu F Y, Xue Y, Zhang Z J. J. Rare Earths, 2013, 31: 609.

[18]

Han W, Zhang Y, Ye K, Yan Y, Zhang M. Mater. Trans. B, 2010, 41: 1123.

[19]

Matsuda H, Ayabe Y. Z., Fur Elektrochem., 1955, 59: 494.

[20]

Ogura T, Sasaki K, Takao K, Arai T, Ikeda Y. Sci. China Chem., 2012, 55: 1699.

[21]

Pletcher D, Greef R, Peat R, Peter L M, Robinson J. Instrumental Methods in Electrochemistry, 2001, London: Horwood Publish Ltd..

[22]

Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications, 2001, New York: John Wiley & Sons 201.

[23]

Osteryoung J, Osteryoung R A. Anal. Chem., 1985, 57: 101.

[24]

Ramaley L, Krasue M S. Anal. Chem., 1969, 41: 1362.

[25]

Berzins T, Delahay P. J. Am. Chem. Soc., 1953, 75: 555.

[26]

Delahay P. New Instrumental Methods in Electrochemistry: Theory, Instrumentation, and Application to Analytical and Physical Chemistry, 1954, New York: Interscience.

[27]

Masset P, Bottomley D, Konings R, Malmbeck R, Rodrigues A, Serp J, Glatz J P. J. Electrochem. Soc., 2005, 152: A1109.

[28]

Yang L, Hudson R G. J. Electrochem. Soc., 1959, 106: 986.

[29]

Pankratz L B. Thermodynamic Properties of Halides, 1984, Bulletin: Bureau of Mines 674.

[30]

Nicholson R S. Anal. Chem., 1965, 37: 1351.

[31]

Kuznetsov S A, Kuznetsova S V, Stangrit P T. Soviet Electrochem., 1990, 26: 55.

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/