Interactions of phenanthroline compounds with i-motif DNA

Ning Gao , Yanbo Wang , Chunying Wei

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 495 -499.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 495 -499. DOI: 10.1007/s40242-014-3391-9
Article

Interactions of phenanthroline compounds with i-motif DNA

Author information +
History +
PDF

Abstract

The interactions of each of three phenanthroline derivatives 1, 2 and 3 with the human telomeric i-motif DNA were investigated. The results suggest these compounds are potent binders. The compounds could stabilize the structure of i-motif DNA by π-π stacking. Moreover, the binding constants of the compounds with i-motif DNA were (2.71–8.12)×104 L·mol−1, and the binding stoichiometry ratio was 1:1. CD studies reveal that the binding by phenanthroline compounds perturbs the conformation of i-motif DNA.

Keywords

i-Motif DNA / Phenanthroline derivative / Interaction

Cite this article

Download citation ▾
Ning Gao, Yanbo Wang, Chunying Wei. Interactions of phenanthroline compounds with i-motif DNA. Chemical Research in Chinese Universities, 2014, 30(3): 495-499 DOI:10.1007/s40242-014-3391-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bugaut A, Balasubramanian S. Nucleic Acids Res., 2012, 40(11): 4727.

[2]

Xu Y. Chem. Soc. Rev., 2011, 40(5): 2719.

[3]

Lee I J, Yi J W, Kim B H. Chem. Commun., 2009, 5383.

[4]

Shi S, Zhao J, Geng X T, Yao T M, Huang H L, Liu T L, Zheng L F, Li Z H, Yang D J, Ji L N. Dalton Trans., 2010, 39(10): 2490.

[5]

Kendrick S, Akiyama Y, Hecht S M, Hurley L H. J. Am. Chem. Soc., 2009, 131(48): 17667.

[6]

Dembska A, Rzepecka P, Juskowiak B. J. Fluoresc., 2013, 23(4): 807.

[7]

Guo K, Gokhale V, Hurley L H, Sun D. Nucleic Acids Res., 2008, 36(14): 4598.

[8]

Bucek P, Jaumot J, Aviñó A, Eritja R, Gargallo R. Chem. Eur. J., 2009, 15(46): 12663.

[9]

Jaumot J, Eritja R, Gargallo R. Anal. Bioanal. Chem., 2011, 399(6): 1983.

[10]

Xu Y, Sugiyama H. Nucleic Acids Res., 2006, 34(3): 949.

[11]

Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley L H. J. Am. Chem. Soc., 2007, 129(33): 10220.

[12]

Brazier J A, Shah A, Brown G D. Chem. Commun., 2012, 48(87): 10739.

[13]

Li X., Peng Y. H., Ren J. S., Qu X. G., PNAS, 2006, 103(52), 19658.

[14]

Rodriguez R, Müller S, Yeoman J A, Trentesaux C, Riou J F, Balasubramanian S. J. Am. Chem. Soc., 2008, 130(47): 15758.

[15]

Fernández S, Eritja R, Aviňó A, Jaumot J, Gargallo R. Int. J. Biol. Macromol., 2011, 49(4): 729.

[16]

Alberti P, Ren J S, Teulade-Fichou M P, Guittat L, Riou J F, Chaires J, Hélène C, Vigneron J P, Lehn J M, Mergny J L. J. Biomol. Struct. Dyn., 2001, 19(3): 505.

[17]

Li X, Peng Y H, Ren J S. Proc. Natl. Acad. Sci. USA, 2006, 103(52): 19658.

[18]

Xu H X, Zhang H Y, Qu X G. J. Inorg. Biochem., 2006, 100(10): 1646.

[19]

Wei C Y, Wang Y B, Zhang M Y. Org. Biomol. Chem., 2013, 11(14): 2355.

[20]

Ma D L, Che C M, Yan S C. J. Am. Chem. Soc., 2009, 131(5): 1835.

[21]

Leroy J L, Guéron M, Mergny J L, Hélène C. Nucleic Acids Res., 1994, 22(9): 1600.

[22]

Mergny J L, Lacroix L, Han X G, Leroy J L, Hélène C. J. Am. Chem. Soc., 1995, 117(35): 8887.

[23]

Chen X, Zhou X J, Han T, Wu J Y, Zhang J Y, Guo S W. ACS Nano, 2013, 7(1): 531.

[24]

Wang L H, Wu Y B, Chen T G, Wei C Y. Int. J. Biol. Macromol., 2013, 52: 1.

[25]

Wei C Y, Jia G Q, Yuan J L, Feng Z C, Li C. Biochemistry, 2006, 45(21): 6681.

[26]

Valeur B, Berberan-Santos M N. Molecular Fluorescence: Principles and Applications, 2012 Second Edition Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA 175.

[27]

Wei C Y, Ren L J, Gao N. Int. J. Biol. Macromol., 2013, 57: 1.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/