Synthesis of flower-like manganese wad and its decolorization performance for azo dye Congo red

Aili Yang , Bingqing Wei , Zhengjun Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 306 -309.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 306 -309. DOI: 10.1007/s40242-014-3384-8
Article

Synthesis of flower-like manganese wad and its decolorization performance for azo dye Congo red

Author information +
History +
PDF

Abstract

Flower-like manganese wad(MW) with high activity was synthesized via ultrasonic-assisted redox reaction of sole manganese salt MnO4 . MW was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The experimental results indicate that the maximum decolorization rate of Congo red(CR) reached above 95% within 15 min in a wide pH range from 2.0 to 6.0. Results also show that MW has excellent decolorization performance for azo dye CR which implies potential application for removing dye pollutants from industrial effluents.

Keywords

Manganese wad / Ultrasonic synthesis / Congo red / Decolorization

Cite this article

Download citation ▾
Aili Yang, Bingqing Wei, Zhengjun Zhang. Synthesis of flower-like manganese wad and its decolorization performance for azo dye Congo red. Chemical Research in Chinese Universities, 2014, 30(2): 306-309 DOI:10.1007/s40242-014-3384-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sui M, Xing S, Sheng L, Huang S, Guo H. J. Hazard. Mater., 2012, 227/228: 227.

[2]

Chang C S W, Chang C H, Chen S H, Wang M C, Madhava R M, Satya V S. Sci. Total Environ., 2011, 409(19): 4078.

[3]

Zhai R, Wan Y, Liu L, Zhang X, Wang W, Liu J, Zhang B. Water Sci. Technol., 2012, 65(6): 1054.

[4]

Pretorius P J, Linder P W. Appl. Geochem., 2001, 16(9/10): 1067.

[5]

Huang Y J, Lin Y L, Li W S. Chem. Res. Chinese Universities, 2012, 28(5): 874.

[6]

Hou Y, Cheng Y W, Hobson T, Liu J. Nano Lett., 2010, 10(7): 2727.

[7]

Xu C, Li B, Du H, Kang F, Zeng Y. J. Power Sources, 2008, 180(1): 664.

[8]

Subramanian V, Zhu H W, Wei B Q. Chem. Phy. Lett., 2008, 453(4–6): 242.

[9]

Xing S, Han R, Ma Z, Wu Y, Zhou Z. CrystEngCommun., 2011, 13(20): 6033.

[10]

Bach S, Henry M, Baffier N, Livage J. J. Solid State Chem., 1990, 88(2): 325.

[11]

Qiu G, Huang H, Dharmarathna S, Benbow E, Stafford L, Suib S L. Chem. Mater., 2011, 23(17): 3892.

[12]

Song R, Wang H J, Feng S H. Chem. Res. Chinese Universities, 2012, 28(4): 577.

[13]

Yang Y, Xiao L, Zhao Y, Wang F. Int. J. Electrochem. Sci., 2008, 3: 67.

[14]

Okitsu K, Iwatani M, Nanzai B, Nishimura R, Maeda Y. Ultrasonics Sonochem., 2009, 16(3): 387.

[15]

Zhu S, Zhou Z, Zhang D, Wang H. Micropor. Mesopor. Mater., 2006, 95(1–3): 257.

[16]

Yang L, Hu C, Nie Y, Qu J. Environ. Sci. Technol., 2009, 43(7): 2525.

[17]

Zhang L, Nie Y, Hu C, Hu X. J. Hazard. Mater., 2011, 190(1–3): 780.

[18]

Nesbitt H W, Banerjee D. Am. Mineral., 1998, 83: 305.

[19]

Clarke C E, Kielar F, Talbot H M, Johnson K L. Environ. Sci. Technol., 2010, 44(3): 1116.

[20]

Perumal K, Malleswari R B, Catherin A, Moorthy T A S. J. Microbiol. Biotechnol. Res., 2012, 2(3): 475.

[21]

Sawhney R, Kumar A. Int. J. Environ. Sci., 2011, 1(6): 1261.

[22]

Suwannawong P, Khammuang S, Sarnthima R. J. Biochem. Technol., 2010, 3(2): 182.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/