PDF
Abstract
The lowest triplet energy levels of the six ligands(T) were determined to be 22989 cm−1[1,3-bis-(1′-phenyl-3′-methyl-5′-pyrazolon-4′)-1,3-propanedione, BPMPTD], 23148 cm−1[1,4-bis-(1′-phenyl-3′-methyl-5′-pyrazolon-4′)-1,4-butanedione, BPMPBD], 23419 cm−1[1,5-bis-(1′-phenyl-3′-methyl-5′-pyrazolon-4′)-1,5-pentane-dione, BPMPPD], 23310 cm−1[1,6-bis-(1′-phenyl-3′-methyl-5′-pyrazolon-4′)-1,6-hexanedione, BPMPHD], 21978 cm−1[1,9-bis-(1′-phenyl-3′-methyl-5′-pyrazolon-4′)-1,9-nonanedione, BPMPND] and 21930 cm−1[1,10-bis-(1′-phenyl-3′-methyl-5′-pyrazolon-4′)-1,10-decanedione, BPMPDD], respectively. It was explained satisfactorily that the six ligands are more efficient for sensitizing the luminescence of Tb3+ than that of Eu3+ at room temperature, and the order of the luminescent intensities for the Tb3+ complexes is explained by the relative energy gap between T and 5 D J of Tb3+ or Eu3+. As a conclusion, when 2700 cm−1<ΔE(T-5 D 4)<3000 cm−1, the luminescent intensity of the Tb3+ complex is the strongest. This means that the lowest triplet energy level of the ligand is a chief factor to dominate RE3+ luminescence.
Keywords
Rare earth complex
/
Optical property
/
Luminescence
Cite this article
Download citation ▾
Ruhu Gou, Yaling Wang, Rudong Yang, Yan Lan.
Luminescent properties of terbium(III) and europium(III) complexes with six 4-acetyl-bispyrazolones.
Chemical Research in Chinese Universities, 2014, 30(2): 190-193 DOI:10.1007/s40242-014-3380-z
| [1] |
Wu W N, Yuan W B, Tang N, Yang R D, Yan L, Xu Z H. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65: 912.
|
| [2] |
Shin M G, Thangaraju K, Kim S, Park J W, Kim Y H, Kwon S K. Organic Electronics, 2011, 12: 785.
|
| [3] |
Wang X, Yan Q, Chu P C, Luo Y H, Zhang Z S, Wu S, Wang L J, Zhang Q J. Journal of Luminescence, 2011, 131: 1719.
|
| [4] |
Zhuravlev K P, Tsaryuk V I, Pekareva I S, Sokolnicki J, Klemenkova Z S. Journal of Photochemistry & Photobiology, A: Chemistry, 2011, 219: 139.
|
| [5] |
Sato S, Wada M. Bull. Soc. Jpn., 1970, 43: 1955.
|
| [6] |
Lu Y, Zhang D, Xu Y. Chem. Res. Chinese Universites, 2013, 29(5): 831.
|
| [7] |
Gou R H, Yang R D, Yan L. Journal of Rare Earths, 2009, 27: 790.
|
| [8] |
Wang Y L, Gou R H, Yang R D, Yan L. Journal of Sichuan University(Natural Science Edition), 2012, 49: 86.
|
| [9] |
Ding Y F, Yu X B, Xiong J. Chin. Rare Earth, 2003, 24: 18.
|
| [10] |
Li W X, Tian G X, Gao J F. Chem. Reagent, 2003, 25: 8.
|
| [11] |
Wu S L, Yang Y S. J. Alloys Comp., 1992, 180: 399.
|
| [12] |
Yu Y L, Wang L M, Xu S K. Chem. J. Chinese Universities, 2013, 34(7): 1617.
|
| [13] |
Cai Z H, Tan M Y. Journal of Rare Earths, 2002, 20: 382.
|
| [14] |
Pylewski L L, Mikulski C M. Coord. Chem. Rev., 1973, 11: 93.
|
| [15] |
Speca A N, Gelfand L S. Inorg. Chem., 1976, 15: 1493.
|
| [16] |
Ma L, Yang R D, Yan L. Synth. React. Inorg. Met. Org. Chem., 1998, 28: 1343.
|
| [17] |
Liu S F, Yan L, Yang R D. Journal of Rare Earths, 2000, 18: 81.
|
| [18] |
Yan L, Yang R D, Song F L. Chinese Journal of Applied Chemistry, 1999, 16: 59.
|
| [19] |
Boekelheide V, Linn W J. J. Am. Chem. Soc., 1954, 76: 1286.
|
| [20] |
Jerzy S, Miroslaw S. Roczniki Chem., 1964, 38: 1793.
|
| [21] |
Abraham R J, Loftus P. Proton and Carbon-13 NMR Spectroscopy, 1983, New York: Wiley 212.
|
| [22] |
Nakamato K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 1978, New York: John Wiley 227.
|
| [23] |
Geary W Y. Coord. Chem. Rev., 1971, 7: 81.
|
| [24] |
Qiang S. Rare Earth Chemistry, 1993, Zhengzhou: Henan Technology Publication 304.
|