Pine needle-like nanocomposite: Supercritical CO2 assisted polythiophene synthesis on carbon nanotubes

Leilei Lü , Zhimin Chen , Guiheng Xu , Jianan Zhang , Qun Xu

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 521 -526.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 521 -526. DOI: 10.1007/s40242-014-3379-5
Article

Pine needle-like nanocomposite: Supercritical CO2 assisted polythiophene synthesis on carbon nanotubes

Author information +
History +
PDF

Abstract

A facile method was successfully developed to prepare a “pine needle-like” nanocomposite of carbon nanotubes/polythiophene(CNTs/PTh) in ethanol with the assistance of supercritical CO2(SC CO2). The experiment conditions such as mass ratio of thiophene monomer to carbon nanotubes, reaction temperature, and reaction time were optimized, and the morphology and thickness of PTh layers on CNTs were hence effectively controlled. The results of Fourier transform infrared(FTIR) spectra, X-ray photoelectron spectra(XPS) and Raman spectra indicate the π-π interactions between PTh and CNT. A possible formation mechanism about the unique microstructure was suggested by virtue of the morphological evolution of the nanocomposite. As a facile, environment benign, and adjustable method, the proposed method holds great potential in the preparation of functional hybrid nanocomposites with the help of SC CO2, which will be promising in the fields of nanofabrication and electrochemical device preparation.

Keywords

Carbon nanotube / Polythiophene / Supercritical CO2 / Nanocomposite

Cite this article

Download citation ▾
Leilei Lü, Zhimin Chen, Guiheng Xu, Jianan Zhang, Qun Xu. Pine needle-like nanocomposite: Supercritical CO2 assisted polythiophene synthesis on carbon nanotubes. Chemical Research in Chinese Universities, 2014, 30(3): 521-526 DOI:10.1007/s40242-014-3379-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ben-Valid S, Botka B, Kamaras K, Zeng A, Yitzchaik S. Carbon, 2010, 48(10): 2773.

[2]

Fan H S, Wang H, Zhao N, Zhang X L, Xu J. J. Mater. Chem., 2012, 22(6): 2774.

[3]

Karim M R, Lee C J, Lee M S. J. Polym. Sci. Pol. Chem., 2006, 44(18): 5283.

[4]

Salvatierra R V, Oliveira M M, Zarbin A J G. Chem. Mater., 2010, 22(18): 5222.

[5]

Lefrant S, Baibarac M, Baltog I. J. Mater. Chem., 2009, 19(32): 5690.

[6]

de Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(1): 535.

[7]

Sun X M, Chen T, Yang Z B, Peng H S. Accounts Chem. Res., 2013, 46(2): 539.

[8]

Karousis N, Tagmatarchis N, Tasis D. Chem. Rev., 2010, 110(9): 5366.

[9]

Hatchett D W, Josowicz M. Chem. Rev., 2008, 108(2): 746.

[10]

Lee S J, Lee J M, Cheong I W, Lee H, Kim J H. J. Polym. Sci. Poly. Chem., 2008, 46(6): 2097.

[11]

Sivakkumar S R, Howlett P C, Winther-Jensen B, Forsyth M, MacFarlane D R. Electrochim. Acta, 2009, 54: 6844.

[12]

Bounioux C, Katz E A, Yerushalmi-Rozen R. Polym. Advan. Technol., 2012, 23: 1129.

[13]

Geng J X, Zeng T Y. J. Am. Chem. Soc., 2006, 128(51): 16827.

[14]

Shen K Y, Hu C W, Chang L C, Ho K C. Sol. Energ. Mat. Sol. C., 2012, 98: 294.

[15]

McCullough R D. Adv. Mater., 1998, 10(2): 93.

[16]

Yao J B, Wang Y H, Zhang H Z. Chem. Res. Chinese Universities, 2013, 29(6): 1185.

[17]

Tang J, Kong L, Zhang J, Zhan L Z, Zhan H, Zhou Y H, Zhan C M. React. Funct. Polym., 2008, 68: 1408.

[18]

Kuila B K, Park K, Dai L M. Macromolecules, 2010, 43(16): 6699.

[19]

Fu C P, Zhou H H, Liu R, Huang Z Y, Chen J H, Kuang Y F. Mater. Chem. Phys., 2012, 132(2/3): 596.

[20]

Hou Y, Cheng Y W, Hobson T, Liu J. Nano. Lett., 2010, 10: 2727.

[21]

de Simone J M. Science, 2002, 297(5582): 799.

[22]

Xu H Y, Cui D L, Cao B Q. Chem. Res. Chinese Universities, 2012, 28(6): 850.

[23]

Yue J, Xu Q, Zhang Z W, Chen Z M. Macromolecules, 2007, 40(25): 8821.

[24]

Li Z P, Guan H T, Yu N, Xu Q, Imae I, Wei J Y. J. Phys. Chem. C, 2010, 114(22): 10119.

[25]

He L H, Zheng X L, Xu Q. J. Phys. Chem. B, 2010, 114(16): 5257.

[26]

Yu N, He L H, Ren Y Y, Xu Q. Polymer, 2011, 52(2): 472.

[27]

Zhang F, Zhang H, Zhang Z Y, Chen Z M, Xu Q. Macromolecules, 2008, 41(12): 4519.

[28]

Zhang Z W, Xu Q, Chen Z M, Yue J. Macromolecules, 2008, 41(8): 2868.

[29]

Zhu G W, Chen X B, Jiang H, Huang J, Wang R W, Qiu S L. Chem. J. Chinese Universities, 2013, 29(6): 1036.

[30]

Chen L M, Ozisik R, Schadler L S. Polymer, 2010, 51(11): 2368.

[31]

Shieh Y T, Liu G L, Wu H H, Lee C C. Carbon, 2007, 45(9): 1880.

[32]

Li X G, Li J, Meng Q K, Huang M R. J. Phys. Chem. B, 2009, 113(29): 9718.

[33]

Chen W F, Yan L F, Bangal P R. Carbon, 2010, 48(4): 1146.

[34]

Gök A, Omastova M, Yavuz A G. Synthetic Met., 2007, 157(1): 23.

[35]

Li X, Wan M X, Wei Y, Shen J Y, Chen Z J. J. Phys. Chem. B, 2006, 110(30): 14623.

[36]

Vásquez M, Cruz G J, Olayo M G, Timoshina T, Morales J, Olayo R. Polymer, 2006, 47(23): 7864.

[37]

Wang H L, Hao Q L, Yang X J, Lu L D, Wang X. Acs Appl. Mater. Inter., 2010, 2(3): 821.

[38]

Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L, Zhang F B. Adv. Mater., 2008, 20(23): 4490.

[39]

Liu L Q, Barber A H, Nuriel S, Wagner H D. Adv. Funct. Mater., 2005, 15(6): 975.

[40]

Lee C U, Dadmun M D. J. Polym. Sci. Pol. Phys., 2008, 46(14): 1747.

[41]

Giambastiani G, Cicchi S, Giannasi A, Luconi L, Rossin A, Mercuri F, Bianchini C, Brandi A, Melucci M, Ghini G, Stagnaro P, Conzatti L, Passaglia E, Zoppi M, Montini T, Fornasiero P. Chem. Mater., 2011, 23(7): 19233.

[42]

Yan Y F, Cheng Q L, Wang G C, Li C Z. J. Power Sources, 2011, 196(18): 7835.

[43]

Zeng C C, Hossieny N, Zhang C, Wang B. Polymer, 2010, 51(3): 655.

[44]

Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L C. J. Phys. Chem. C, 2011, 115(47): 23584.

[45]

Wang Y G, Li H Q, Xia Y Y. Adv. Mater., 2006, 18(19): 2619.

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/