Synthetic control method for crystallite size of MOF-5

Pengfei Han , Changfu Yuan , Junyi Xu , Jin Liu

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 356 -361.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 356 -361. DOI: 10.1007/s40242-014-3349-y
Article

Synthetic control method for crystallite size of MOF-5

Author information +
History +
PDF

Abstract

We reported a dripping solvothermal method for synthesizing metal-organic framework-5(MOF-5). It started from separately dissolving Zn(NO3)2 and terephthalic acid(H2BDC) in dimethyl formamide(DMF), and then dripping one solution into the other. Results of SEM, XRD and laser particle size distribution show that regular cubic-shaped and micro-crystallite powder of MOF-5 can be obtained. The d 0.5(volume-median-diameter) values are 4.32 μm for particles prepared by dripping Zn(NO3)2 into H2BDC(ZH) and 9.32 μm for those prepared by dripping H2BDC into Zn(NO3)2(HZ), much smaller than 22.7 μm that of particles prepared by the traditional adding water solvothermal method(L). The standard deviations of the particle size distributions fitted by the GaussAmp model are 2.49, 4.38 and 15.4 respectively for ZH, HZ and L, further revealing narrower size distributions of particles prepared by the dripping method. In addition, the Langmuir specific surface areas are 923 m2/g for ZH and 868 m2/g for HZ. The TGA results present mass losses of 4.18% and 3.62% at 105 °C, 17.19% and 14.78% at 245 °C, 39.04% and 34.85% at 600 °C separately for ZH and HZ, which correspond to the removal of H2O, DMF and the decomposition of MOF-5. This indicates that MOF-5 has a strong adsorption ability for small molecules. Besides, the mass loss of 48.39%(ZH) and 41.02%(HZ) between 400 °C and 600 °C are less than the theoretical value of 57.81% for MOF-5 decomposition to ZnO, suggesting that an impure phase with an extra amount of ZnO may exist in the cavities of MOF-5.

Keywords

Metal-organic framework-5(MOF-5) / Dripping solvothermal method / Size distribution

Cite this article

Download citation ▾
Pengfei Han, Changfu Yuan, Junyi Xu, Jin Liu. Synthetic control method for crystallite size of MOF-5. Chemical Research in Chinese Universities, 2014, 30(3): 356-361 DOI:10.1007/s40242-014-3349-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun D, Ma S, Ke Y, Collins D J, Zhou H C. J. Am. Chem. Soc., 2006, 128(12): 3896.

[2]

Lan A, Li K, Wu H, Olson D H, Emge T J, Ki W, Hong M, Li J. Angew. Chem. Int. Ed., 2009, 48(13): 2334.

[3]

Lu G, Hupp J T. J. Am. Chem. Soc., 2010, 132(23): 7832.

[4]

Kreno L E, Leong K, Farha O K. Chem. Rev., 2012, 112: 1105.

[5]

Wu C D, Hu A, Zhang L, Lin W. J. Am. Chem. Soc., 2005, 127(25): 8940.

[6]

Lee J Y, Farha O K, Roberts J. Chem. Soc. Rev., 2009, 38(5): 1450.

[7]

Rieter W J, Pott K M, Taylor K M L, Lin W. J. Am. Chem. Soc., 2008, 130(35): 11584.

[8]

Horcajada P, Serre C, Maurin G. J. Am. Chem. Soc., 2008, 130(21): 6774.

[9]

Horcajada P, Chalati T, Serre C. Nat. Mater., 2009, 9(2): 172.

[10]

Allan P K, Wheatley P S, Aldous D. Dalton Trans., 2012, 41(14): 4060.

[11]

Yang B C, Jiang Y D, Qin X J, Chen Z L, Ren F. Chem. J. Chinese Universities, 2012, 33(1): 26.

[12]

Wiers B M, Foo M L, Balsara N P, Long J R. J. Am. Chem. Soc., 2011, 133(37): 14522.

[13]

Combelles C, Yahia M B, Pedesseau L, Doublet M L. J. Phys. Chem. C, 2010, 114(20): 9518.

[14]

Combarieu G, Morcrette M, Millange F, Guillou N, Cabana J, Grey C P, Margiolaki I, Férey G, Tarascon J M. Chem. Mater., 2009, 21(8): 1602.

[15]

Yang L M, Vajeeston P, Ravindran P, Fjellvåg H, Tilset M. Inorg. Chem., 2010, 49(22): 10283.

[16]

Baumann T F. Metal-Organic Frameworks: Literature Survey and Recommendation of Potential Sorbent Materials, 2010, Livermore, CA: Lawrence Livermore National Laboratory(LLNL) 1.

[17]

Li H, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

[18]

Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y. Microporous Mesoporous Mater., 2003, 58(2): 105.

[19]

Kaye S S, Dailly A, Yaghi O M, Jeffrey R. J. Am. Chem. Soc., 2007, 129(46): 14176.

[20]

Hermes S, Zacher D, Baunemann A, Wöll C, Fischer R A. Chem. Mater., 2007, 19(9): 2168.

[21]

Yoo Y, Lai Z, Jeong H K. Microporous Mesoporous Mater., 2009, 123(1): 100.

[22]

Li M, Dinca M. J. Am. Chem. Soc., 2011, 133(33): 12926.

[23]

Falcaro P, Hill A J, Nairn K M, Jasieniak J, Mardel J I, Bastow T J, Mayo S C, Gimona M, Gomez D, Whitfield H J. Nat. Commun., 2011, 2: 237.

[24]

Li Y, Yang R T. J. Am. Chem. Soc., 2005, 128(25): 726.

[25]

Panella B, Hirscher M. Adv. Mater., 2005, 17(5): 538.

[26]

Li Y, Yang R T. J. Am. Chem. Soc., 2006, 128(25): 8136.

[27]

Hafizovic J, Bjørgen M, Olsbye U, Dietzel P D C, Bordiga S, Prestipino C, Lamberti C, Lillerud K P. J. Am. Chem. Soc., 2007, 129(12): 3612.

[28]

Ravon U, Savonnet M, Aguado S. Microporous Mesoporous Mater., 2010, 129(3): 319.

[29]

Thirumurugan A, Rao C. J. Mater. Chem., 2005, 15(35/36): 3852.

[30]

Rowsell J L, Yaghi O M. Microporous Mesoporous Mater., 2004, 73(1): 3.

[31]

Choi J S, Son W J, Kim J, Ahn W S. Microporous Mesoporous Mater., 2008, 116(1): 727.

[32]

Kondo S, Stone C H, Abe L. Adsorption Science, 1999, Beijing: Chemical Industry Press 31.

[33]

Zhao Z, Li Z, Lin Y S. Ind. Eng. Chem. Res., 2009, 48(22): 10015.

[34]

Chen B, Wang X, Zhang Q, Xi X, Cai J, Qi H, Shi S, Wang J, Yuan D, Fang M. J. Mater. Chem., 2010, 20(18): 3758.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/