Metal-organic chemical vapor deposition of GaSb/GaAs quantum dots: the dependence of the morphology on growth temperature and vapour V/III ratio

Haoyu Yang , Renjun Liu , You Lü , Liankai Wang , Tiantian Li , Guoxing Li , Yuantao Zhang , Baolin Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 13 -17.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 13 -17. DOI: 10.1007/s40242-014-3342-5
Article

Metal-organic chemical vapor deposition of GaSb/GaAs quantum dots: the dependence of the morphology on growth temperature and vapour V/III ratio

Author information +
History +
PDF

Abstract

GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties. The effects of metal-organic chemical vapor deposition(MOCVD) parameters, such as growth temperature and vapour V/III ratio[V/III ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony( TESb)], were systematically investigated to achieve GaSb quantum dots with high quality and high density. The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope( AFM) images. The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/III ratio. GaSb quantum dots with an average height of 4.94 nm and a density of 2.45×1010 cm–2 were obtained by optimizing growth temperature and V/III ratio.

Keywords

GaSb quantum dot / Surface morphology / Metal-organic chemical vapor deposition / Atomic force microscope

Cite this article

Download citation ▾
Haoyu Yang, Renjun Liu, You Lü, Liankai Wang, Tiantian Li, Guoxing Li, Yuantao Zhang, Baolin Zhang. Metal-organic chemical vapor deposition of GaSb/GaAs quantum dots: the dependence of the morphology on growth temperature and vapour V/III ratio. Chemical Research in Chinese Universities, 2014, 30(1): 13-17 DOI:10.1007/s40242-014-3342-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ribeiro E, Govorov A O, Carvalho W Jr., Medeiros-Ribeiro G. Phys. Rev. Lett., 2004, 92: 126402.

[2]

Sellers I R, Whiteside V R, Kuskovsky I L, Govorov A O, McCombe B D. Phys. Rev. Lett., 2008, 100: 136405.

[3]

Janssens K L, Partoens B, Peeters F M. Phys. Rev. B, 2002, 66: 075314.

[4]

Geller M, Kapteyn C, Műller-Kirsch L, Heitz R, Bimberg D. Appl. Phys. Lett., 2003, 82: 2706.

[5]

Mowbray D J, Skolnick M S. J. Phys. D: Appl. Phys., 2005, 38: 2059.

[6]

Lin S, Tseng C, Lin W, Mai S, Wu S. Appl. Phys Lett., 2010, 96: 123503.

[7]

Tseng C, Lin W, Wu S, Chen S, Lin S. J. Crystal Growth, 2011, 323: 466.

[8]

Tatebayashi J, Khoshakhlagh A, Huang S H. Appl. Phys Lett., 2007, 90: 261115.

[9]

Lin W H, Tseng C C, Chao K P. IEEE Phot. Tech. Lett., 2011, 23: 106.

[10]

Laghumavarapu R B, Moscho A, Khoshakhlagh A, EI-Emawy M. Appl. Phys Lett., 2007, 90: 173125.

[11]

Hayne M, Young R J, Smakman E P, Nowozin T, Hodgson P, Garleff J K, Rambabu P, Koenraad P M, Marent A, Bonato L, Schliwa A, Bimberg D. J. Phys. D: Appl. Phys., 2013, 46: 264001.

[12]

Tatebayashi J, Khoshakhlagh A, Huang S H, Balakrishnan G, Dawson L R, Huffaker D L. Applied Physics Letters, 2007, 90: 261115.

[13]

Luque A, Marti A. Phys. Rev. Lett., 1997, 78: 5014.

[14]

Shockley W, Queisser H. J.Appl. Phys., 1961, 32: 510.

[15]

Laghumavarapu R B, Moscho A, Khoshakhlagh A, El-Emawy M, Lester L F, Huffaker D L. Appl. Phys. Lett., 2007, 90: 173125.

[16]

Kamarudin M A, Hayne M, Zhuang Q D. J. Phys. D: Appl. Phys., 2010, 43: 065402.

[17]

Yoshiaki N, Tomohiro S, Masakazu I. J. Appl. Phys., 2009, 105: 014308.

[18]

Liang B L, Lin A, Pavarelli N. Nanotechnology, 2009, 20: 455604.

[19]

Jiang C, Sakaki H. Physica E, 2005, 26: 180.

[20]

Kawazu T, Noda T, Mano T, Ohmori M, Akiyama Y, Sakaki H. Phys. Status Solidi C, 2011, 8: 275.

[21]

Jiang C, Kawazu T, Kobayashi S, Sakaki H. J. Crystal Growth, 2007, 301/302: 828.

[22]

Kawazu T, Noda T, Mano T, Sakuma Y, Sakaki H. J. Crystal Growth, 2013, 378: 475.

[23]

Polojärvi V, Gubanov A, Schramm A, Koskinen R, Paajaste J, Salmi J, Suomalainen S, Guina M. Materials Science and Engineering B, 2012, 117: 1103.

[24]

Timm R, Lenz A, Eisele H, Ivanova L, Pötschke K, Pohl U W, Bimberg D, Balakrishnan G, Huffaker D L, Dähne M. Phys. Stat. Sol. C, 2006, 3: 3971.

[25]

Fu K, Fu Y. Appl. Phys. Lett., 2009, 94: 181913.

[26]

Kawazu T, Mano T, Noda T, Akiyama Y, Sakaki H. Phys. Status Solidi B, 2009, 246: 733.

[27]

Kawazu T, Mano T, Noda T, Sakaki H. J. Crystal Growth, 2009, 311: 2255.

[28]

Seifert W, Carlsson N, Miller M, Pistol M, Samuelson L, Wallenberg L R. Prog. Cryst. Growth and Charact., 1996, 33: 423.

[29]

Zech E S, Chang A S, Martin A J, Canniff J C, Lin Y H, Millunchick J M, Goldman R S. Appl. Phys. Lett., 2013, 103: 082107.

[30]

Lenz A, Tournié E, Schuppang J, Dähne M, Eisele H. Appl. Phy. Lett., 2013, 102: 102105.

[31]

Stringfellow G B. Organometallic Vapor-phase Epitaxy: Theory and Practice, 1988 2nd Ed. San Diego, California: Academic Press 190.

[32]

Balakrishnan G, Tatebayashi J, Khoshakhlagh A, Huang S H, Jallipalli A, Dawson L R, Huffaker D L. Appl. Phys. Lett., 2006, 89: 161104.

[33]

Stringfellow G B, Shurtleff J K, Lee R T, Fetzer C M, Jun S W. J. Cryst. Growth, 2000, 221: 1.

[34]

Zhao Z M, Hul’ko O, Kim H J, Liu J, Shi B, Xie Y H. Thin Solid Films, 2005, 483: 158.

[35]

Wang T, Forchel A. J. Appl. Phys., 1999, 85: 2591.

[36]

Zhou W, Yin S, Wang J, Wang C. Chin. Phys. B, 2008, 17: 3008.

[37]

Matsuura T, Miyamoto T, Kageyama T, Ohta M, Matsui Y, Furuhata T, Koyama F. J. Phys. D: Appl. Phys., 2004, 43: 605.

[38]

Daruka I, Tersoff J, Barabasi A L. Phys. Rev. Lett., 1999, 82: 2753.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/