Corrosion of nickel-based alloy G30 in the stratum water containing H2S/CO2

Yanrong Chang , Mei Lu , Shangwei Wang , Fan Tang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 500 -508.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 500 -508. DOI: 10.1007/s40242-014-3334-5
Article

Corrosion of nickel-based alloy G30 in the stratum water containing H2S/CO2

Author information +
History +
PDF

Abstract

The influences of temperature and CO2 pressure on the corrosion of nickel-based alloy G30 in the stratum water containing H2S/CO2 were investigated with the aid of electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis and scanning electron microscopy(SEM). The results indicate that alloy G30 is in the passive state in the stratum water, which is related to the formation of the passive film on its surface. This passive film can significantly protect the substrate from further corrosion. And the film protection is enhanced with decreasing temperature and CO2 pressure. Auger electron spectrometry(AES) and X-ray photoelectron spectrometry(XPS) results reveal that the passive film shows the double-layer structure, i.e. the inner chromium oxide and the outer iron/nickel spinel oxides or hydroxides with Mo oxides dispersing throughout the inner and outer scale.

Keywords

Nickel-based alloy / Stratum water / Corrosion / Passive film / Double-layer structure

Cite this article

Download citation ▾
Yanrong Chang, Mei Lu, Shangwei Wang, Fan Tang. Corrosion of nickel-based alloy G30 in the stratum water containing H2S/CO2. Chemical Research in Chinese Universities, 2014, 30(3): 500-508 DOI:10.1007/s40242-014-3334-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bojinov M, Fabricius G, Kinnunen P, Laitinen T, Makela K, Saario T, Sundholm G, Yliniemi K. Electrochim Acta, 2002, 47: 1697.

[2]

Faichuk M G, Rammamurthy S. Corros. Sci., 2011, 53: 1383.

[3]

Ren X, Sridharan K, Allen T R. Corrosion, 2007, 63: 603.

[4]

Otsuka N, Fujikawa H. Corrosion, 1991, 47: 240.

[5]

Montemor M F, Ferreira M G S, Hakiki N E, Belo M D. Corros. Sci., 2000, 42: 1635.

[6]

Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J. Nucl. Sci. Technol., 2003, 40: 509.

[7]

Ries L A S, Cunha Belo M D, Ferreira M G S, Muller I L. Corros. Sci., 2008, 50: 676.

[8]

Huang J B, Wu X Q, Han E H. Corros. Sci., 2009, 51: 2976.

[9]

Dupin M, Gosser P, Walls M G, Rondot B, Pastol J L, Faty S, Ferreira M G S, Cunha Belo M D. Annales de Chimie Science des Matériaux, 2002, 27: 19.

[10]

Iofa Z A, Batrakov V V, Ba C N. Electrochim. Acta, 1964, 9: 1645.

[11]

Shoesmith D W, Taylor P, Bailey M G. Electrochim. Acta, 1978, 23: 903.

[12]

Bolmer P W. Corrosion, 1965, 21: 69.

[13]

Gryse R D, Gomes W P, Cardon F, Vennik J. J. Electrochem. Soc., 1975, 122: 711.

[14]

Hakiki N E, Cunha Belo M D, Simões A M P, Ferreira M G S. J. Electrochem. Soc., 1998, 145: 3821.

[15]

Finklea H O. J. Electrochem. Soc., 1982, 129: 2003.

[16]

Hakiki N E, Cunha Belo M D. J. Electrochem. Soc., 1996, 143: 3088.

[17]

Nogami G. J. Electrochem. Soc., 1982, 129: 2219.

[18]

Harrington S P, Devine T M. J. Electrochem. Soc., 2008, 155: C381.

[19]

Hanawa T, Asami K, Asaoka K. Corrosion Sci., 1996, 38: 1579.

[20]

Ziemniak S E, Hanson M. Corros. Sci., 2003, 45: 1595.

[21]

Nicic I, Macdonald D D. J. Nucl. Mater., 2008, 379: 54.

[22]

Hubrecht J, Embrechts M, Bogaerts W. Electrochim Acta, 1993, 38: 1867.

[23]

Juttner K. Electrochim. Acta, 1990, 35: 1501.

[24]

Cao C N, Zhang J Q. The Introduction of Electrochemical Impendance Spectra, 2002, Beijing: Science Press 92.

[25]

Park K J, Ahn S J, Kwon H S. Electrochim. Acta, 2011, 56: 1662.

[26]

Cao C N. Electrochim. Acta, 1990, 35: 831.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/