Proteomics dissection of cold responsive proteins based on PEG fractionation in Arabidopsis

Shanyu Li , Xiangguo Liu , Shang Wang , Dongyun Hao , Jinghui Xi

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 272 -278.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 272 -278. DOI: 10.1007/s40242-014-3311-z
Article

Proteomics dissection of cold responsive proteins based on PEG fractionation in Arabidopsis

Author information +
History +
PDF

Abstract

Proteome profiling was performed on Arabidopsis plant exposed to cold stress at 4 °C for 24 h in an attempt to explore the mechanisms of plant climate adaptation. The polyethylene glycol(PEG) fractionation protocol developed in this lab was used to identify as many differentially expressed low-abundance proteins as possible. In comparison with those of the biological controls, 67 protein spots with at least two-fold difference in expression were identified for the plant exposed to cold temperatures; and from these spots, 50 proteins were successfully identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF MS). Bioinformatics studies on these proteins show that 57.8% of these proteins were localized in the chloroplast. Of these proteins, 8 ones have functions in photosynthesis, including glycine hydroxymethyltransferase, Rubisco large subunit, Rubisco activase, PSBO2, fructose-1,6-bisphosphate aldolase, NADP-dependent malate dehydrogenase, sedoheptulose bisphosphatase and photosystem II reaction center PsbP family protein, suggesting that photosynthesis is greatly affected by cold stress. The identified proteins were validated by quantitative real-time polymerase chain reaction(qPCR). Taken together, our results suggest that the chloroplast might also act as a cold stress sensor and that photosynthesis-related proteins may play important roles in cold acclimation for Arabidopsis.

Keywords

Arabidopsis thaliana / Cold stress / Proteome / Protein fractionation

Cite this article

Download citation ▾
Shanyu Li, Xiangguo Liu, Shang Wang, Dongyun Hao, Jinghui Xi. Proteomics dissection of cold responsive proteins based on PEG fractionation in Arabidopsis. Chemical Research in Chinese Universities, 2014, 30(2): 272-278 DOI:10.1007/s40242-014-3311-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boyer J S. Science, 1982, 218: 443.

[2]

Thomashow M F. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50: 571.

[3]

Neilson K A, Gammulla C G, Mirzaei M, Imin N, Haynes P A. Proteomics, 2010, 10: 828.

[4]

Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Curr. Opin. Plant Biol., 2003, 6: 410.

[5]

Savitch L V, Leonardos E D, Krol M, Jansson S, Grodzinski B, Huner N P A, Öquist G. Plant Cell Environ., 2002, 25: 761.

[6]

Stitt M, Hurry V. Curr. Opin. Plant Biol., 2002, 5: 199.

[7]

An D, Yang J, Zhang P. BMC Genomics, 2012, 13: 64.

[8]

Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J F. Plant Physiol., 2002, 130: 2129.

[9]

Valcu C M, Junqueira M, Shevchenko A, Schlink K. J. Proteome Res., 2009, 8: 4077.

[10]

Wang X, Fan P, Song H, Chen X, Li X, Li Y. J. Proteome Res., 2009, 8: 3331.

[11]

Goulas E, Schubert M, Kieselbach T, Kleczkowski L A, Gardeström P, Schröder W, Hurry V. Plant J., 2006, 47: 720.

[12]

Cui S X, Huang F, Wang J, Ma X, Cheng Y S, Liu J Y. Proteomics, 2005, 5: 3162.

[13]

Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Mol. Cell. Proteomics, 2006, 5: 484.

[14]

Kosová K, Vítámvás P, Prášil I T, Renaut J. J. Proteomics, 2011, 74: 1301.

[15]

Xi J H, Wang X, Li S Y, Zhou X, Yue L, Fan J, Hao D Y. Phytochemistry, 2006, 67: 2341.

[16]

Bradford M. Anal. Biochem., 1976, 72: 248.

[17]

Liu L L, Zhang J, Zhang Y F, Li Y C, Xi J H, Li S Y. Chem. Res. Chinese Universities, 2010, 26(6): 958.

[18]

Livak K J, Schmittgen T D. Methods, 2001, 25: 402.

[19]

Yukio K, Matsuo U. Plant J., 2003, 36: 141.

[20]

Nikolau B J, Oliver D J, Schnable P S, Wurtele E S. Biochem. Soc. T., 2000, 28: 591.

[21]

Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X H, Wang T, Chong K, Wang X J, Zuo J R. Plant Physiol., 2008, 148: 1042.

[22]

He Y, Mawhinney T P, Preuss M L, Schroeder A C, Chen B, Abraham L, Jez J M, Chen S. Plant J., 2009, 60: 679.

[23]

Bae M S, Cho E J, Choi E Y, Park O K. Plant J., 2003, 36: 652.

[24]

Kwon S J, Choi E Y, Choi Y J, Ahn J H, Park O K. J. Exp. Bot., 2006, 57: 1547.

[25]

Mariapina R, Simona A, Giovanni R, Gabriella S S, Tonia L, Francesca V, Andrea S, Mauro M. Mol. BioSyst., 2013, 9: 1257.

[26]

Hurry V M, Strand A, Tobiaeson M, Gardestrom P, Öquist G. Plant Physiol., 1995, 109: 697.

[27]

Martindale W, Leegood R C. J. Exp. Bot., 1997, 48: 1865.

[28]

Strand, Hurry V, Henkes S, Huner N, Gustafsson P, Gardeström P, Stitt M. Plant Physiol., 1999, 119: 1387.

[29]

Brüggemann W, Dauborn B, Klaucke S, Linger P, Maas-Kantel K, Wenner A. Acta. Physiol. Plant, 1995, 17: 113.

[30]

Hurry V M, Malmberg G, Gardeström P, Öquist G. Plant Physiol., 1994, 106: 983.

[31]

Strand, Hurry V, Gustafsson P, Gardeström P. Plant J., 1997, 12: 605.

[32]

Gonzali S, Pistelli L, de Bellis L, Alpi A. Plant Sci., 2001, 160: 1107.

[33]

Strand, Foyer C H, Gustafsson P, Gardeström P, Hurry V. Plant Cell Environ., 2003, 26: 523.

[34]

Jamai A, Salomé P A, Schilling S H, Weber A P, McClung C R. Plant Cell, 2009, 21: 595.

[35]

Moreno J I, Martin R, Castresana C. Plant J., 2005, 41: 451.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/