Proteomics dissection of cold responsive proteins based on PEG fractionation in Arabidopsis
Shanyu Li , Xiangguo Liu , Shang Wang , Dongyun Hao , Jinghui Xi
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 272 -278.
Proteomics dissection of cold responsive proteins based on PEG fractionation in Arabidopsis
Proteome profiling was performed on Arabidopsis plant exposed to cold stress at 4 °C for 24 h in an attempt to explore the mechanisms of plant climate adaptation. The polyethylene glycol(PEG) fractionation protocol developed in this lab was used to identify as many differentially expressed low-abundance proteins as possible. In comparison with those of the biological controls, 67 protein spots with at least two-fold difference in expression were identified for the plant exposed to cold temperatures; and from these spots, 50 proteins were successfully identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF MS). Bioinformatics studies on these proteins show that 57.8% of these proteins were localized in the chloroplast. Of these proteins, 8 ones have functions in photosynthesis, including glycine hydroxymethyltransferase, Rubisco large subunit, Rubisco activase, PSBO2, fructose-1,6-bisphosphate aldolase, NADP-dependent malate dehydrogenase, sedoheptulose bisphosphatase and photosystem II reaction center PsbP family protein, suggesting that photosynthesis is greatly affected by cold stress. The identified proteins were validated by quantitative real-time polymerase chain reaction(qPCR). Taken together, our results suggest that the chloroplast might also act as a cold stress sensor and that photosynthesis-related proteins may play important roles in cold acclimation for Arabidopsis.
Arabidopsis thaliana / Cold stress / Proteome / Protein fractionation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
/
| 〈 |
|
〉 |