Facile synthesis of al-pillared mesoporous montmorillonite assisted with concentrated Al13 solution

Tianqi Zhao , Wenjie Li , Hongyan Wang , Fanyu Meng

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 200 -204.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 200 -204. DOI: 10.1007/s40242-014-3271-3
Article

Facile synthesis of al-pillared mesoporous montmorillonite assisted with concentrated Al13 solution

Author information +
History +
PDF

Abstract

Al-pillared mesoporous montmorillonite was facilely synthesized from concentrated Al13 solution obtained by vacuum concentrating-ultrasonic pillaring strategy. Concentrated Al13 solution could reduce the process of pillare and increase pillaring efficiency. The absolute value of layer distance could be increased by 0.96 nm via concentrated Al13 solution pillare. 27Al NMR indicates that Al Keggin ions of concentrated Al13 are arranged in a more regular way by vacuum concentrating method. The Al-pillared mesoporous montmorillonite from concentrated Al13 solution has bigger specific surface area and even pore size distribution which were characterized by X-ray diffraction(XRD) and nitrogen adsorption measurement. Furthermore the catalytic activity of Al-pillared montmorillonite loaded Ni and Mo catalysts was tested by the hydrodesulfurization of thiophene. The thiophene conversion reached 77.5%, which was higher than the corresponding value reported in the literature.

Keywords

Pillared montmorillonite / Mesoporous material / Vacuum concentrating-ultrasonic

Cite this article

Download citation ▾
Tianqi Zhao, Wenjie Li, Hongyan Wang, Fanyu Meng. Facile synthesis of al-pillared mesoporous montmorillonite assisted with concentrated Al13 solution. Chemical Research in Chinese Universities, 2014, 30(2): 200-204 DOI:10.1007/s40242-014-3271-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gashti M P, Eslami S. Superlattices and Microstructures, 2012, 51: 135.

[2]

Ran S Y, Xu Y Y, Guo Z H, Fang Z P. Chem. J. Chinese Universities, 2013, 34(2): 467.

[3]

Aouad A, Mandalia T, Bergaya F. Applied Clay Science, 2005, 28: 175.

[4]

Salerno P, Mendioroz S. Applied Clay Science, 2002, 22: 115.

[5]

Battiste D. R., Pillared Interlayered Clay Products of Increased Stability, US 4719191, 1988

[6]

Kloprogge J T, Duong L V, Frost R L. Environ. Geol., 2005, 47: 967.

[7]

Matthes W, Madsen F T, Kahr G. Clays and Clay Minerals, 1999, 47(5): 617.

[8]

Karapinar N, Donat R. Desalination, 2009, 249: 123.

[9]

Karamanis DT, Aslanoglou X A, Assimakopoulos P A, Gangas N H, Pakon A A P N G. Clays and Clay Minerals, 1997, 45(5): 709.

[10]

Pichowicz M, Mokaya R. Chem. Mater., 2004, 16: 263.

[11]

Shi B Y, Li G H, Wang D S, Tang H X. Separation and Purification Technology, 2007, 54(1): 88.

[12]

Duong L V, Kloprogge J T, Frost R L, van Veen J A R. J. Porous. Mater., 2007, 14: 71.

[13]

Oades J M. Clays and Clay Minerals, 1984, 32(1): 49.

[14]

Lahav N, Shani V, Shabtai J. Clays and Clay Minerals, 1978, 26(2): 107.

[15]

Ge Z, Li D, Pinnavaia T J. Microporous Mater., 1994, 3: 165.

[16]

Sivaiah M V, Petit S, Brendlé J, Patrier P. Applied Clay Science, 2010, 48: 138.

[17]

Chen Z Y, Luan Z K, Fan B, Zhang Z G, Li Y D, Jia Z P. Chinese J. Anal. Chem., 2006, 34(1): 38.

[18]

Qin Z H, Yuan P, Zhu J X, He H P, Liu D, Yang S Q. Applied Clay Science, 2010, 50: 546.

[19]

Mrad I, Ghorbel A, Tichit D, Lambert J F. Applied Clay Science, 1997, 12: 349.

[20]

Acemana S, Lahav N, Yariv S. Thermochimica Acta, 1999, 349.

[21]

Kloprogge J T. J. Porous Mater., 1998, 5: 5.

[22]

Salerno P, Mendioroz S, López A A. Appl. Catal. A: Gen., 2004, 259: 17.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/