Optimization of preparation process for allylamine-bacterial cellulose via graft copolymerization by response surface methodology

Min Lu , Runa A , Xiaohui Guan , Xiaohui Xu , Yingshengnan Cui , Tingting Gao

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 527 -530.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (3) : 527 -530. DOI: 10.1007/s40242-014-3263-3
Article

Optimization of preparation process for allylamine-bacterial cellulose via graft copolymerization by response surface methodology

Author information +
History +
PDF

Abstract

In order to improve the efficiency of new adsorbent, grafting-allylamine bacterial cellulose(al-BC), response surface methodology(RSM) was used for the optimization of preparation process. Three factors affecting the yield of grafting reaction are the amount of allylamine, the concentration of ceric ammonium nitrate(CAN) and the concentration of nitric acid. Based on the regression coefficient analysis in the Box-Behnken design, a relationship between the preparation variable and grafting yield was obtained. Square error analysis on main factors, and multi-variable interactions were employed for studying grafting yield. The results show that at the conditions of CAN of 23.00 mmol/L CAN, 0.17 mol/L nitric acid, adding an amount of grafting-allylamine bacterial cellulose of 26.49 mL/L made grafting rate reach maximum of 24.25% at 40 °C after the reaction for 4 h. The experimental results are in good agreement with the calculation values via proposed regression equation, indicating that the equation could be used to predict and optimizate the preparation of grafting al-BC.

Keywords

Response surface methodology / Allylamine / Bacterial cellulose

Cite this article

Download citation ▾
Min Lu, Runa A, Xiaohui Guan, Xiaohui Xu, Yingshengnan Cui, Tingting Gao. Optimization of preparation process for allylamine-bacterial cellulose via graft copolymerization by response surface methodology. Chemical Research in Chinese Universities, 2014, 30(3): 527-530 DOI:10.1007/s40242-014-3263-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zou Y, Chen S Y, Wang J Y, Shi S K, Yan Z Y, Wang H P. Journal of Materials Science and Engineering, 2008, 26(3): 426.

[2]

Rezaee A, Asadikaram G, Mirzai M, Naimi N, Dargahi R, Sadegi A. Journal of Biological Sciences, 2008, 8(1): 209.

[3]

Lu M, Li Y Y, Guan X H, Wei D Z. Journal of Northeastern University(Natural Science), 2010, 31(8): 1196.

[4]

Chen S Y, Zou Y, Yan S Y, Shen W, Shi S K, Zhang X, Wang H P. Journal of Hazardous Materials, 2009, 161(2/3): 1355.

[5]

Shen W, Chen S Y, Shi S K, Li X, Zhang X, Hu W L, Wang H P. Carbohydrate Polymers, 2009, 75(1): 110.

[6]

Nada A M A, Alkady M Y, Fekry H M. Bioresources, 2007, 3(1): 46.

[7]

Wu J, Zheng Y D, Gao S, Guo J, Cui Q Y, Ding X, Chen X H. Chem. J. Chinese Universities, 2013, 34(1): 210.

[8]

Guan X H, Li Y Y, Lu M, Xu Y, Wu B, Guo X Y. Materials Review, 2011, 25(5): 135.

[9]

Guan X H, Xu Y, Lu M, Yu L, Li Y Y. Materials Review, 2012, 26(7): 82.

[10]

Yin G H, Dang Y L. Carbohydrate Polymer, 2008, 74(3): 603.

[11]

Fan C, Zhan X, Chen J, Pan F S, Qin L, Wang T, Li J D. Journal of Chemical Engineering of Chinese Universities, 2012, 26(3): 374.

[12]

Zhang C, Fan D D, Shang L A, Ma X X, Luo Y N, Xue W J, Gao P F. Chinese Journal of Chemical Engineering, 2010, 18(1): 137.

[13]

Guo J Q, Luo Y N, Fan D D, Gao P F, Ma X X, Zhu C H. Chinese Journal of Chemical Engineering, 2010, 18(5): 830.

[14]

Zhang C. Acta Polymerical Sinica, 2001, 4: 241.

[15]

Wang J N, Li A M, Zhou Y, Li X. Chinese Chemical Letters, 2009, 20: 1478.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/