Facile synthesis of enantiomerically pure 1-(5-bromo-2-chlorophenyl)-1-(4-ethoxyphenyl)ethane

Shuo Zhang , Wenjin Wang , Chuan Li , Peng Liu , Weiren Xu , Lida Tang , Jianwu Wang , Guilong Zhao

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 250 -256.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (2) : 250 -256. DOI: 10.1007/s40242-014-3257-1
Article

Facile synthesis of enantiomerically pure 1-(5-bromo-2-chlorophenyl)-1-(4-ethoxyphenyl)ethane

Author information +
History +
PDF

Abstract

A facile 7-step procedure for the synthesis of enantiomerically pure 1-(5-bromo-2-chlorophenyl)-1-(4-ethoxyphenyl)ethanes[(R)-2 and(S)-2] that started from (5-bromo-2-chlorophenyl)(4-ethoxyphenyl)methanone 3 was developed. The key step was the resolution of 2-(5-bromo-2-chlorophenyl)-2-(4-ethoxyphenyl)acetic acid 6 by crystallizations of its L- and D-menthyl esters 7 and 8 from petroleum ether to give optically pure enantiomers 9 and 10, respectively. The absolute configurations of the products were unambiguously determined by single-crystal X-ray diffractions of four key intermediates, 9, 10, 13 and 14. This procedure is characterized by inexpensiveness, scalability and ability to produce two individual enantiomers of a diarylethane with unambiguously determined absolute configurations and high enantiomeric purities.

Keywords

Diarylethane / Diastereomer / Enantiomer / Resolution / SGLT2 inhibitor

Cite this article

Download citation ▾
Shuo Zhang, Wenjin Wang, Chuan Li, Peng Liu, Weiren Xu, Lida Tang, Jianwu Wang, Guilong Zhao. Facile synthesis of enantiomerically pure 1-(5-bromo-2-chlorophenyl)-1-(4-ethoxyphenyl)ethane. Chemical Research in Chinese Universities, 2014, 30(2): 250-256 DOI:10.1007/s40242-014-3257-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Porte D. Diabetes Metab. Res. Rev., 2001, 17(3): 181.

[2]

Kikkawa R. Br. J. Nutr., 2000, 84(S2): S183.

[3]

Washburn W N. J. Med. Chem., 2009, 52(7): 1785.

[4]

Meng M, Ellsworth B A, Nirschl A A, McCann P J, Patel M, Girotra R N, Wu G, Sher P M, Morrison E P, Biller S A, Zahler R, Deshpande P P, Pullockaran A, Hagan D L, Morgan N, Taylor J R, Obermeier M T, Humphreys W G, Khanna A, Discenza L, Robertson J M, Wang A, Han S, Wetterau J R, Janovitz E B, Flint O P, Whaley J M, Washburn W N. J. Med. Chem., 2008, 51(5): 1145.

[5]

Mascitti V, Maurer T S, Robinson R P, Bian J, Boustany-Kari C M, Brandt T, Collman B M, Kalgutkar A S, Klenotic M K, Leininger M T, Lowe A, Maguire R J, Masterson V M, Miao Z, Mukaiyama E, Patel J D, Pettersen J C, Préville C, Samas B, She L, Sobol Z, Steppan C M, Stevens B D, Thuma B A, Tugnait M, Zeng D, Zhu T. J. Med. Chem., 2011, 54(8): 2952.

[6]

Goodwin N C, Mabon R, Harrison B A, Shadoan M K, Almstead Z Y, Xie Y, Healy J, Buhring L M, DaCosta C M, Bardenhagen J, Mseeh F, Liu Q, Nouraldeen A, Wilson A G E, Kimball S D, Powell D R, Rawlins D B. J. Med. Chem., 2009, 52(20): 6201.

[7]

Shi Y H, Zhao G L, Liu W, Shao H, Tang L D, Wang Y L, Xu W R. Chin. J. Med. Chem., 2011, 21(1): 57.

[8]

Paquin J F, Defieber C, Stephenson C R J, Carreira E M. J. Am. Chem. Soc., 2005, 127(31): 10850.

[9]

Fessard T C, Andrews S P, Motoyoshi H, Carreira E M. Angew. Chem. Int. Ed., 2007, 46(48): 9331.

[10]

Podhajsky S M, Iwai Y, Cook-Sneathen A, Sigman M S. Tetrahedron, 2011, 67(24): 4435.

[11]

Hayashi T, Tamao K, Katsuro Y, Nakae I, Kumada M. Tetrahedron Lett., 1980, 21(19): 1871.

[12]

Hatanaka Y, Hiyama T. J. Am. Chem. Soc., 1990, 112(21): 7793.

[13]

López-Pérez A, Adrio J, Carretero J C. Org. Lett., 2009, 11(23): 5514.

[14]

Taylor B L H, Swift E C, Waetzig J D, Jarvo E R. J. Am. Chem. Soc., 2011, 133(3): 389.

[15]

Imao D, Glasspoole B W, Laberge V S, Crudden C M. J. Am. Chem. Soc., 2009, 131(14): 5024.

[16]

Hayashi T, Matsumoto Y, Ito Y. J. Am. Chem. Soc., 1989, 111(9): 3426.

[17]

Crudden C M, Hleba Y B, Chen A C. J. Am. Chem. Soc., 2004, 126(30): 9200.

[18]

Uozumi Y, Hayashi T. J. Am. Chem. Soc., 1991, 113(26): 9887.

[19]

Albright A, Eddings D, Black R, Welch C J, Gerasimchuk N N, Gawley R E. J. Org. Chem., 2011, 76(18): 7341.

[20]

Brook A G. J. Am. Chem. Soc., 1963, 85(19): 3051.

[21]

Kumazawa T, Yanase M, Harakawa H, Obase H, Shirakura S, Ohishi E, Oda S, Kubo K, Yamada K. J. Med. Chem., 1994, 37(6): 804.

[22]

Martin J A, Lambert R W, Merrett J H, Parkes K E B, Thomas G J, Baker S J, Bushnell D J, Cansfield J E, Dunsdon S J, Freeman A C, Hopkins R A, Jonhns I R, Keech E, Simmonite H, Walmsley A, Kai-In P W, Holland M. Bioorg. Med. Chem. Lett., 2001, 11(13): 1655.

[23]

Jin L L, Jin G Z. Chem. Res. Chinese Universities, 2012, 28(6): 971.

[24]

Li H H, Wang Z J, Wang L Z, Li Z M, Zhao W G. Chem. J. Chinese Universities, 2011, 32(1): 79.

[25]

Zhang S, Wang Y, Wei Q, Xu W, Tang L, Zhao G, Wang J. Chin. Chem. Lett., 2013, 24(5): 429.

[26]

Zhao G, Lou Y, Zhang L, Shao H, Xu W, Tang L, Zou M. Synth. Commun., 2012, 42(19): 2885.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/