Scattering resonance state of Br+HBr(v=0)→BrH(v′=0)+Br reaction explored by partial potential energy surface method

Xi Lu , Ming-tao Zhang , Zheng-ting Cai , Xiao-min Sun

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1159 -1163.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1159 -1163. DOI: 10.1007/s40242-013-3254-9
Article

Scattering resonance state of Br+HBr(v=0)→BrH(v′=0)+Br reaction explored by partial potential energy surface method

Author information +
History +
PDF

Abstract

The partial potential energy surface(PPES) of Br+HBr(v=0)→BrH(v′=0)+Br was designed by coupling the vibration energy and the minimum energy of the corresponding reaction path, V mep. All the calculations were performed at the theoritical level of QCISD(T)/6-311++G**//MP2/6-311++G**. Based on the analysis of PPES, the dynamic “Eyring Lake” mechanism gave birth to the scattering resonance state. The resonance energy was also obtained via PPES. Then a lifetime matrix of the resonance state was established by solving the translational wave-function via the numerical propagation method. Then the reaction resonance lifetime was calculated to be 125 fs. It is in good agreement with the experimental result.

Keywords

Partial potential energy surface / Resonance state / Lifetime

Cite this article

Download citation ▾
Xi Lu, Ming-tao Zhang, Zheng-ting Cai, Xiao-min Sun. Scattering resonance state of Br+HBr(v=0)→BrH(v′=0)+Br reaction explored by partial potential energy surface method. Chemical Research in Chinese Universities, 2013, 29(6): 1159-1163 DOI:10.1007/s40242-013-3254-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu K P. Ann. Rev. Phys. Chem., 2001, 52: 139.

[2]

Lee S H, Dong F, Liu K P. J. Chem. Phys., 2002, 116: 7839.

[3]

Zhou J, Lin J J, Liu K P. J. Chem. Phys., 2003, 119: 8289.

[4]

Shiu W, Lin J J, Liu K P, Wu M, Parker D H. J. Chem. Phys., 2004, 120: 117.

[5]

Shiu W, Lin J J, Liu K P. Phys. Rev. Lett., 2004, 92: 103201.

[6]

Skodje R T, Skouterrs D, Manolopoulos D E, Lee S H, Dong F, Liu K P. J. Chem. Phys., 2000, 112: 4536.

[7]

Liu K P. Intern. Rev. Phys. Chem., 2001, 20: 189.

[8]

Skodje RT, Skouteris D, Manolopoulos D E, Lee S H, Dong F, Liu K P. Phys. Rev. Lett., 2000, 85: 1206.

[9]

Zhang W Q, Kawamata H S, Liu K P. Science, 2009, 325: 303.

[10]

Czakó G, Shuai Q, Liu K P, Bowman J M. J. Chem. Phys., 2010, 133: 131101.

[11]

Zhang W Q, Wu G R, Pan H L, Shuai Q, Jiang B, Dai D X, Yang X M. J. Phys. Chem. A, 2009, 113: 4652.

[12]

Wang F Y, Lipciuc M L, Yang X M, Theofanis N K. Phys. Chem. Chem. Phys., 2009, 11: 2234.

[13]

Dong W R, Xiao C L, Wang T, Dai D X, Yang X M. Science, 2010, 327: 1501.

[14]

Zhang W Q, Zhou Y, Wu G R, Lu Y P, Pan H L, Fu B N, Shuai Q, Liu L, Liu S, Zhang L L, Jiang B, Dai D X, Li S R, Zeng X, Bastiaan B J, Bowman J M, Collinsf M A, Zhang D H, Yang X M. PNAS, 2010, 107: 12782.

[15]

Zhou C Y, Ren Z F, Tan S L, Ma Z B, Mao X C, Dai D X, Pan H J, Yang X M, Jerry L, Russell C, Alec M W, Wang Z, Li Z Y, Wang B, Yang J L, Hou J G. Chemical Science, 2010, 1: 575.

[16]

Xiao C L, Xu X, Liu S, Wang T, Dong W R, Yang T G, Sun Z G, Dai D X, Zhang D H, Yang X M. Science, 2011, 333: 440.

[17]

Yang X M, Minton T K, Zhang D H. Science, 2012, 336: 1650.

[18]

Schatz G C. Science, 2000, 288: 1599.

[19]

Zare R N. Science, 2006, 311: 1383.

[20]

Metz R B, Kitsopoulos T N, Weaver A, Neumark D M. J. Chem. Phys., 1988, 88: 1463.

[21]

Kitsopoulos T N, Waller I M, Loeser J G, Neumark D M. Chem. Phys. Lett., 1989, 159: 300.

[22]

Waller I M, Kitsopoulos T N, Neumark D M. J. Phys. Chem., 1990, 94: 2240.

[23]

Neumark D M. Phys. Chem. Comm., 2002, 5: 76.

[24]

Truhlar D G, Kuppermann A. J. Chem. Phys., 1970, 52: 3841.

[25]

Larionov A B, Effenberger M. Phys. Rev. C, 2002, 66: 054604.

[26]

Kendrick B K, Jayasinghe L, Moser S, Auzinsh M, Shafer-Ray N. Phys. Rev. Lett., 2000, 84: 4325.

[27]

Sun X M, Wang H Y, Cai Z T, Feng D C, Bian W S. Chem. J. Chinese Universities, 2004, 25(9): 1702.

[28]

Lu X, Wang H Y, Cai Z T, Feng D C. Chem. J. Chinese Universities, 2007, 28(10): 1981.

[29]

Wang H Y, Lu X, Sun X M, Cai Z T, Feng D C. Chem. Phys. Lett., 2007, 443: 369.

[30]

Lu X, Wang H Y, Cai Z T, Feng D C. Int. J. Quantum. Chem., 2008, 108: 334.

[31]

Lu X, Wang H Y, Cai Z T, Feng D C. J. Theor. Comput. Chem., 2007, 6: 575.

[32]

Yue H, Lu X, Wang H Y, Cai Z T. Can. J. Chem., 2009, 87: 684.

[33]

Metz R B, Neumark D M. J. Chem. Phys., 1992, 97: 962.

[34]

Metz R B, Weaver A, Bradforth S E, Kitsopoulos T N, Neumark D M. J. Phys. Chem., 1990, 94: 1377.

[35]

Wang H Y, Sun X M, Cai Z T, Feng D C. J. Theor. Comp. Chem., 2006, 5: 307.

[36]

Zhu H, Xie D Q. Chem. J. Chinese Universities, 2008, 29(1): 174.

[37]

Marcus R A. J. Chem. Phys., 1966, 45: 4493.

[38]

Light J C, Walker R B. J. Chem. Phys., 1976, 65: 4272.

[39]

Head-Gordon M, Pople J A, Frisch M J. Chem. Phys. Lett., 1988, 153: 503.

[40]

Frisch M J, Head-Gordon M, Pople J A. Chem. Phys. Lett., 1990, 166: 275.

[41]

Frisch M J, Head-Gordon M, Pople J A. Chem. Phys. Lett., 1990, 166: 281.

[42]

Head-Gordon M, Head-Gordon T. Chem. Phys. Lett., 1994, 220: 122.

[43]

Wang H X, Wang B Y, Zhang J L, Li Z R, Li X Y. Chem. J. Chinese Universities, 2011, 32(5): 1123.

[44]

Liang X, Sun T, Wang Y B. Chem. J. Chinese Universities, 2012, 33(3): 541.

[45]

Fukui K. J. Phys. Chem., 1970, 74: 4161.

[46]

Fukui K. Acc. Chem. Res., 1981, 14: 363.

[47]

Pople J A, Head-Gordon M, Raghavachari K. J. Chem. Phys., 1987, 87: 5968.

[48]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E Jr., Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision B.01, 2009, Wallingford CT: Gaussian Inc.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/