Electrostatically controlled nematic and smectic assembly of gold nanorods

Wen-bo Wei , Kuan Chen , Guang-lu Ge

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 929 -933.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 929 -933. DOI: 10.1007/s40242-013-3208-2
Article

Electrostatically controlled nematic and smectic assembly of gold nanorods

Author information +
History +
PDF

Abstract

The assembly of gold nanorods(GNRs) into different liquid crystalline structures can be controlled by tuning their surface electric potential. After mildly removing excess surfactants in the GNRs solution, the electrostatic interaction between GNRs can be tuned by adjusting counter ion concentration. Specifically, nematic and smectic structures formed after solvent evaporation at low and high bromide concentrations, respectively. These results could be helpful for fabricating anisotropy enabled devices composed of metal and semiconductor nanorods.

Keywords

Nanorod / Nanostructure / Self-assembly

Cite this article

Download citation ▾
Wen-bo Wei, Kuan Chen, Guang-lu Ge. Electrostatically controlled nematic and smectic assembly of gold nanorods. Chemical Research in Chinese Universities, 2013, 29(5): 929-933 DOI:10.1007/s40242-013-3208-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vigderman L, Khanal B P, Zubarev E R. Adv. Mater., 2012, 24: 4811.

[2]

Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112: 2739.

[3]

Nie Z H, Fava D, Kumacheva E, Zou S, Walker G C, Rubinstein M. Nat. Mater., 2007, 6: 609.

[4]

Glotzer S C, Solomon M J. Nat. Mater., 2007, 6: 557.

[5]

Ye X, Collins J E, Kang Y, Chen J, Chen D T N, Yodh A G, Murray C B. Proc. Natl. Acad. Sci. USA, 2010, 107: 22430.

[6]

Jana N R, Pal T. Adv. Mater., 2007, 19: 1761.

[7]

Alexander K D, Skinner K, Zhang S, Wei H, Lopez R. Nano Lett., 2010, 10: 4488.

[8]

Zhong L, Zhou X, Bao S, Shi Y, Wang Y, Hong S, Huang Y, Wang X, Xie Z, Zhang Q. J. Mater. Chem., 2011, 21: 14448.

[9]

Alvarez-Puebla R A, Agarwal A, Manna P, Khanal B P, Aldeanueva-Potel P, Carbo-Argibay E, Pazos-Perez N, Vigderman L, Zubarev E R, Kotov N A, Liz-Marzan L M. Proc. Natl. Acad. Sci. USA, 2011, 108: 8157.

[10]

Zijlstra P, Chon J W M, Gu M. Nature, 2009, 459: 410.

[11]

Lyvers D P, Moon J M, Kildishev A V, Shalaev V M, Wei A. ACS Nano, 2008, 2: 2569.

[12]

Onsager L. Annals of the New York Academy of Sciences, 1949, 51: 627.

[13]

Li L S, Walda J, Manna L, Alivisatos A P. Nano Lett., 2002, 2: 557.

[14]

Li L S, Alivisatos A P. Adv. Mater., 2003, 15: 408.

[15]

Jana N R, Gearheart L A, Obare S O, Johnson C J, Edler K J, Mann S, Murphy C J. J. Mater. Chem., 2002, 12: 2909.

[16]

Sau T K, Murphy C J. Langmuir, 2005, 21: 2923.

[17]

Rabani E, Reichman D R, Geissler P L, Brus L E. Nature, 2003, 426: 271.

[18]

Ge G L, Brus L. J. Phys. Chem. B, 2000, 104: 9573.

[19]

Kim F, Kwan S, Akana J, Yang P D. J. Am. Chem. Soc., 2001, 123: 4360.

[20]

Ming T, Kou X S, Chen H J, Wang T, Tam H L, Cheah K W, Chen J Y, Wang J F. Angew. Chem. Int. Edit., 2008, 47: 9685.

[21]

Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Vicky D N, Kang Y, Engheta N, Kagan C R, Murray C B. ACS Nano, 2012, 6: 2804.

[22]

Walker D A, Browne K P, Kowalczyk B, Grzybowski B A. Angew. Chem. Int. Edit., 2010, 49: 6760.

[23]

Park H S, Agarwal A, Kotov N A, Lavrentovich O D. Langmuir, 2008, 24: 13833.

[24]

Orendorff C J, Hankins P L, Murphy C J. Langmuir, 2005, 21: 2022.

[25]

Nikoobakht B, El-Sayed M A. Chem. Mat., 2003, 15: 1957.

[26]

Nikoobakht B, El-Sayed M A. Langmuir, 2001, 17: 6368.

[27]

Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, Mulvaney P. Coord. Chem. Rev., 2005, 249: 1870.

[28]

Vigderman L, Manna P, Zubarev E R. Angew. Chem. Int. Edit., 2012, 51: 636.

[29]

Gomez-Grana S, Hubert F, Testard F, Guerrero-Martinez A, Grillo I, Liz-Marzan L M, Spalla O. Langmuir, 2012, 28: 1453.

[30]

Kinnear C, Dietsch H, Clift M J D, Endes C, Rothen-Rutishauser B, Petri-Fink A. Angew. Chem. Int. Edit., 2013, 52: 1934.

[31]

Rostro-Kohanloo B C, Bickford L R, Payne C M, Day E S, Anderson L J E, Zhong M, Lee S, Mayer K M, Zal T, Adam L, Dinney C P N, Drezek R A, West J L, Hafner J H. Nanotechnology, 2009, 20(43): 434005.

[32]

Aizpurua J, Bryant G W, Richter L J, Abajo F J G, Kelley B K, Mallouk T. Phys. Rev. B, 2005, 71: 235420.

[33]

Petukhova A, Greener J, Liu K, Nykypanchuk D, Nicolay R, Matyjaszewski K, Kumacheva E. Small, 2012, 8: 731.

[34]

Attal S, Thiruvengadathan R, Regev O. Anal. Chem., 2006, 78: 8098.

[35]

Orendorff C J, Alam T M, Sasaki D Y, Bunker B C, Voigt J A. ACS Nano, 2009, 3: 971.

[36]

Vroege G J, Lekkerkerker H N W. Reports on Progress in Physics, 1992, 55: 1241.

[37]

Lemaire B J, Davidson P, Petermann D, Panine P, Dozov I, Stoenescu D, Jolivet J P. European Phys. J. E, 2004, 13: 309.

[38]

Musevic I, Skarabot M, Tkalec U, Ravnik M, Zumer S. Science, 2006, 313: 954.

[39]

Zeng X, Liu F, Fowler A G, Ungar G, Cseh L, Mehl G H, Mac-Donald J E. Adv. Mater., 2009, 21: 1746.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/