Effects of experimental conditions and kinetics of photodegradation of methylene blue over TiO2

Radchatawedchakoon Widchaya , Thapol Araya , Wanchanthuek Ratchaneekorn

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 149 -156.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (1) : 149 -156. DOI: 10.1007/s40242-013-3177-5
Article

Effects of experimental conditions and kinetics of photodegradation of methylene blue over TiO2

Author information +
History +
PDF

Abstract

The authors investigated the catalytic activity of TiO2 for methylene blue(MB) degradation under solar light. The reaction parameters such as reaction time, TiO2 content, temperature, pH, MB concentration and light irradiation were in attention. Then, the experimental data was analyzed to investigate the adsorption order and adsorption model. The results indicate that the optimum conditions for the removal of MB are a TiO2 content of 0.5 g/L, 0.50 mg/L MB solution, a temperature of 30 °C and reaction time of 60 min. It was found that the amount of MB removal was decreased when the pH and temperature increased. This suggests that the removal process is exothermic. However, the solar light irradiation plays a vital role in enhancing the removal amount of MB. In the dark reaction, the ability of TiO2 to remove MB was increased when the pH increased. The kinetics studies confirm that the adsorption of MB is the Pseudo-second-order. And the adsorption model was fitted with the Freundlich isotherm.

Keywords

Methylene blue / Photodegradation / Kinetic / TiO2

Cite this article

Download citation ▾
Radchatawedchakoon Widchaya, Thapol Araya, Wanchanthuek Ratchaneekorn. Effects of experimental conditions and kinetics of photodegradation of methylene blue over TiO2. Chemical Research in Chinese Universities, 2014, 30(1): 149-156 DOI:10.1007/s40242-013-3177-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1: 1.

[2]

Wang G, Wu F, Zhang X, Luo M, Deng N. J. Hazard. Mater., 2006, 133: 85.

[3]

Zhang X, Wu F, Wang Z, Guo Y, Deng N. J. Mol. Catal. A: Chem., 2009, 301: 134.

[4]

Zhang L, Li P, Gong Z, Li X. J. Hazard. Mater., 2008, 158: 478.

[5]

Hu L, Flanders P M, Miller P L. Water. Res., 2007, 41: 2612.

[6]

Wu R J, Chen C C, Lu C S, Hsu P Y, Chen M H. Desalination, 2010, 250: 869.

[7]

Senthilkumaar S, Porkodi K, Vidyalakshmi R. J. Photochem. Photobiol. A: Chem., 2005, 170(3): 225.

[8]

Sauer T, Cesconeto Neto G, Jose H J, Moreira R F P M. J. Photochem. Photobiol. A, 2002, 149: 147.

[9]

Chen C C, Lu C S, Chung Y C, Jan J L. J. Hazard. Mater., 2007, 141(3): 520.

[10]

Xiao Q, Zhang J, Xiao C, Si Z, Tan X. Solar Ener., 2008, 82: 706.

[11]

Ma M Y, Li Y J, Chen W, Li L Y. Chin. J. Catal., 2010, 31(10): 1221.

[12]

Kumar V, Suh N P. Polym. Eng. Sci., 1990, 30(10): 1327.

[13]

Davis R J, Gainer J L, Neal G O, Wenwu I. Water Environ. Res., 1994, 66: 50.

[14]

Matthews R W. J. Chem. Soc., Faraday Trans., 1989, 85: 1291.

[15]

Hsieh C T, Fan W S, Chen W Y. Microporous Mesoporous Mater., 2008, 116: 677.

[16]

Chen D W, Sivakumar M, Ray A K. Develop. Chem. Eng. Miner. Process., 2000, 8(5/6): 505.

[17]

Chen Y, Wang K, Lou L. J. Photochem. Photobiol. A: Chem., 2004, 163: 281.

[18]

Rahchamani J, Mousavi H Z, Behzad M. Desal., 2011, 267(2/3): 256.

[19]

Yao S, Li J, Shi Z. Particuol., 2010, 8: 272.

[20]

Liu C C, Hsieh Y H, Lai P F, Li C H, Kao C L. Dye. Pigm., 2006, 68(2/3): 191.

[21]

Toor A P, Verma A, Jotshi C K, Bajpai P K, Singh V. Dye. Pigm., 2006, 68(1): 53.

[22]

Ling C M, Mohamed A R, Bhatia S. Chemos., 2004, 57(7): 547.

[23]

Han C, Li Z, Shen J. J. Hazard. Mater., 2009, 168(1): 215.

[24]

Gupta V K, Jain R, Nayak A, Agarwal S, Shrivastava M. Mat. Sci. Eng. C, 2011, 31(5): 1062.

[25]

Lagergren S. Handlingar., 1898, 24(4): 1.

[26]

McKay G, Ho Y S. Process Biochem., 1999, 34: 451.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/