Trichloroethylene dechlorination by copper-contained zero-valent iron slurry

Hai-jun Li , Hua Qiu , Lan-ying Zhang , Na Liu , Bo-lin Zhu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1173 -1179.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1173 -1179. DOI: 10.1007/s40242-013-3165-9
Article

Trichloroethylene dechlorination by copper-contained zero-valent iron slurry

Author information +
History +
PDF

Abstract

Zero valent iron technology has been widely used for treating contaminated wastewater these years. However, it always results in inefficiency in the processes of drying and storage due to oxidation and passivation. This could be avoided by in situ synthesized zero valent iron slurry in an emergency if it possesses the same performance as zero valent iron. In this study, iron slurry was synthesized and directly used for dechlorinating trichloroethylene to measure its degradation efficiencies and properties. Results show that 2%(mass ratio) copper-contained zero-valent iron slurry exhibits the optimal performance compared with the other iron slurries. Batch experiments indicate that factors such as the concentration of trichloroethylene, pH, dissolved oxygen and equilibrium to a certain extent affect the reduction of trichloroethylene by 2%(mass ratio) copper-contained zero-valent iron slurry. Persistent, high-efficiency degradation performance could last 7 cycles. These demonstrate that the application of copper-contained zero-valent iron slurry in treating trichloroethylene-contained wastewater is realistic.

Keywords

Zero valent iron / Copper-contained zero-valent iron slurry / Trichloroethylene / Dechlorination

Cite this article

Download citation ▾
Hai-jun Li, Hua Qiu, Lan-ying Zhang, Na Liu, Bo-lin Zhu. Trichloroethylene dechlorination by copper-contained zero-valent iron slurry. Chemical Research in Chinese Universities, 2013, 29(6): 1173-1179 DOI:10.1007/s40242-013-3165-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choi K, Lee W. J. Hazard. Mater., 2012, 211/212: 146.

[2]

Lien H L, Zhang W X. Colloids Surf. A, 2001, 191(1/2): 97.

[3]

Shin M C, Choi H D, Kim D H, Baek K. Desalination, 2008, 223(1–3): 299.

[4]

Song H, Carraway E R. Appl. Catal. B, 2008, 78(1/2): 53.

[5]

Bonin P M L, Odziemkowski M S, Gillham R W. Corros. Sci., 1998, 40(8): 1391.

[6]

Lin C J, Lo S L, Liou Y H. J. Hazard. Mater., 2004, 116(3): 219.

[7]

Zhang W X, Wang C B, Lien H L. Catal. Today, 1998, 40(4): 387.

[8]

Li T L, Jin Z H, Liu H S, Wang W, Li H Y, Han L. Chem. J. Chinese Universities, 2006, 27(4): 672.

[9]

Fateminia F S, Falamaki C. Process Saf. Environ. Prot., 2013, 91(4): 304.

[10]

Geng B, Li T L, Jin Z H, Qi X H. Chem. J. Chinese Universities, 2009, 30(4): 796.

[11]

Huang Y H, Zhang T C. Water. Res., 2006, 40(16): 3075.

[12]

Li H, Zhao Y S, Zhao R, Ma B W, Chen Z F, Su Y, Zhou R. Chem. Res. Chinese Universities, 2013, 29(4): 765.

[13]

Choe S, Lee S H, Chang Y Y, Hwang K Y, Khim J. Chemosphere, 2001, 42(4): 367.

[14]

Zhang C, Zhu Z, Zhang H, Hu Z. J. Environ. Sci., 2012, 24(6): 1021.

[15]

Liu X H, Li Y J, Yang W J, Guo C C. Chem. Res. Chinese Universities, 2013, 29(3): 526.

[16]

Katsenovich Y P, Miralles-Wilhelm F R. Sci. Total Environ., 2009, 407(18): 4986.

[17]

Tee Y H, Bachas L, Bhattacharyya D. J. Phys. Chem. C, 2009, 113(22): 9454.

[18]

Liu Y, Phenrat T, Lowry G V. Environ. Sci. Technol., 2007, 41(22): 7881.

[19]

Liu Y, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39(5): 1338.

[20]

Farrell J, Kason M, Melitas N, Li T. Environ. Sci. Technol., 1999, 34(3): 514.

[21]

Crane R A, Scott T B. J. Hazard. Mater., 2012, 211/212: 112.

[22]

Dickinson M, Scott T B. J. Hazard. Mater., 2010, 178(1–3): 171.

[23]

Tang P, Deng C, Tang X, Si S, Xiao K. Chem. Eng. J., 2012, 210: 203.

[24]

Fan J H, Ma L M. J. Hazard. Mater., 2009, 164(2/3): 1392.

[25]

Bezbaruah A N, Krajangpan S, Chisholm B J, Khan E, Bermudez J J. J. Hazard. Mater., 2009, 166(2/3): 1339.

[26]

Bezbaruah A N, Shanbhogue S S, Simsek S, Khan E. J. Nanopart. Res., 2011, 13(12): 6673.

[27]

Kim H, Hong H J, Jung J, Kim S H, Yang J W. J. Hazard. Mater., 2010, 176(1–3): 1038.

[28]

Schrick B, Blough J L, Jones A D, Mallouk T E. Chem. Mater., 2002, 14(12): 5140.

[29]

Wang X, Chen C, Chang Y, Liu H. J. Hazard. Mater., 2009, 161(2/3): 815.

[30]

Cheng S F, Wu S C. Chemosphere, 2000, 41(8): 1263.

[31]

Burris D R, Campbell T J, Manoranjan V S. Environ. Sci. Technol., 1995, 29(11): 2850.

[32]

Cho H H, Park J W. Chemosphere, 2006, 64(6): 1047.

[33]

Bransfield S J, Cwiertny D M, Roberts A L, Fairbrother D H. Environ. Sci. Technol., 2006, 40(5): 1485.

[34]

Chen J L, Al-Abed S R, Ryan J A, Li Z. J. Hazard. Mater., 2001, 83(3): 243.

[35]

Dong J, Zhao Y, Zhao R, Zhou R. J. Environ. Sci., 2010, 22(11): 1741.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/