Characterization and three-dimensional structural modeling of humic acid via molecular mechanics and molecular dynamic simulation

Nan Zhao , Yi-zhong Lü , Guang-jun Li

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1180 -1184.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1180 -1184. DOI: 10.1007/s40242-013-3156-x
Article

Characterization and three-dimensional structural modeling of humic acid via molecular mechanics and molecular dynamic simulation

Author information +
History +
PDF

Abstract

The humic acid(HA) sample obtained from the alluvial soil was characterized by elemental composition, pyrolysis gas chromatography-mass spectrometry(Py-GC-MS) and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopy. There is high fat content and a few nitrogen-containing functional groups in HA. Py-GC-MS demonstrates the characterization and structural identification of HA. One long list of identified pyrolysis products was proposed for the construction of conceptual model of HA. Solid-state 13C NMR data indicate there are higher values of alkyl-C, O-alkyl-C and aryl-C in HA. The elemental composition, structural carbon distribution and 13C NMR spectroscopy of simulated HA are consistent with those of experimental HA. HyperChem® was used to simulate the three-dimensional molecular structure of the monomer, which was optimized by the molecular mechanics of the optimized potential for liquid simulations(OPLS) force field and molecular dynamics simulation to get the stable and balanced conformation. The deprotonation process study depicts that the degree of ionization of HA gets deeper, while the electronegativity of HA and the energy of van der Waals(vdW) increase. Moreover, the 3D structure of humic acid with −4 charges is the most stable. The deprotonation process is an endothermic process.

Keywords

Alluvial soil / Humic acid / Conceptual model / Elemental analysis / Pyrolysis gas chromatography-mass spectrometry(Py-GC-MS) / 13C nuclear magnetic resonance(13C NMR) / Molecular simulation / Three-dimensional structure / Optimized potential for liquid simulation(OPLS) force field

Cite this article

Download citation ▾
Nan Zhao, Yi-zhong Lü, Guang-jun Li. Characterization and three-dimensional structural modeling of humic acid via molecular mechanics and molecular dynamic simulation. Chemical Research in Chinese Universities, 2013, 29(6): 1180-1184 DOI:10.1007/s40242-013-3156-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang H X, Yao L, Ding B, Luo J H, Zhou G, Jiang B. Chem. J. Chinese Universities, 2013, 34(5): 1295.

[2]

Diallo M S, Simpson A, Gassman P L, Faulon J L, Johnson J H, Goddard W A, Hatcher P G. Environ. Sci. Technol., 2003, 37: 1783.

[3]

Niederer C, Goss K U. Environ. Sci. Technol., 2007, 41: 3646.

[4]

Albers C N, Banta G T, Jacobsen O S, Hansen P E. Eur. J. Soil Sci., 2008, 59: 693.

[5]

Schaumann G E, Thiele-Bruhn S. Geoderma, 2011, 166: 1.

[6]

Chen Y T, Ding J D. Acta Polymerica Sinica, 2009, 12: 1238.

[7]

Schulten H R, Leinweber P. J. Anal. Appl. Pyrolysis, 1996, 38: 1.

[8]

Swift R. S.; Ed.: Sparks D. L., Organic Matter Characterization, Methods of Soil Analysis, Soil Sci. Soc. Am., Madison, WI, 1996, 1018.

[9]

HyperChem Release 7 for Windows, Hypercube Inc., Gainesville, 2002

[10]

Schulten H R, Schnitzer M. Naturwissenschaften, 1995, 82: 487.

[11]

de la Rosa J M, González-Pérez J A, González-Vila F J, Knicker H, Araújo M F. Org. Geochem., 2011, 42: 791.

[12]

Lu X Q, Hanna J V, Johnson W D. Appl. Geochem., 2000, 15: 1019.

[13]

Schniter M, Khan S U. Humic Substance in the Environment, 1972, New York: Marcel Dekker Inc. 23.

[14]

Hautala K, Peuravuori J, Pihlaja K. Water Res., 2000, 34: 246.

[15]

Baldock J A, Skjemstad J O. Org. Geochem., 2000, 31: 697.

[16]

Yuan J C, Liu Y F, Mei T J, Wang X H. Chem. Res. Chinese Universities, 2011, 27(6): 1014.

[17]

Hatcher P G. Org. Geochem., 1987, 11: 31.

[18]

Chen J S, Chiu C Y. Geoderma, 2003, 117: 129.

[19]

Marche T, Schnitzer M, Dinel H, Paré T, Champagne P, Schulten H R, Facey G. Geoderma, 2003, 116: 345.

[20]

Malcolm R L, MacCarthy P L. Environ. Sci. Technol., 1986, 20: 904.

[21]

Yarkova T A, Gyul’maliev A M. Solid Fuel Chem., 2012, 46: 279.

[22]

Sein L T, Varnum J M, Jansen S A. Environ. Sci. Technol., 1999, 33: 546.

[23]

Fuchs W. Die Chemie der Kohle., 1931, Berlin: Springer 501.

[24]

Stevenson F J. J. Environ. Qual., 1972, 1: 333.

[25]

Schulten H R, Leinweber P. Biol. Fertility Soils, 2000, 30: 399.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/