Photovoltaic performance and charge recombination dynamics of P3HT/PCBM blend heterojunction

Jin-bo Yao , Ying-hui Wang , Han-zhuang Zhang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1185 -1188.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1185 -1188. DOI: 10.1007/s40242-013-3152-1
Article

Photovoltaic performance and charge recombination dynamics of P3HT/PCBM blend heterojunction

Author information +
History +
PDF

Abstract

We prepared the polymer solar cell based on poly(3-hexylthiophene)(P3HT)/fullerene derivative PCBM(PCBM=[6,6]-phenyl-C61-butyric acid methyl ester) heterojunction and investigated the irradiation intensity-dependent charge recombination dynamics of heterojunction employing nanosecond transient absorption spectroscopy with bias light so as to simulate the photophysical process in heterojunction when the photovoltaic device is on operation. The experimental data exhibit that the yield of free charges gradually decreases and the loss of mobile carriers originated from bimolecular recombination simultaneously increases as the irradiation intensity gradually enhances. This indicates that the polymer solar cell is much suitably used at a low irradiation intensity.

Keywords

Polymer solar cell / Charge recombination / Transient absorption

Cite this article

Download citation ▾
Jin-bo Yao, Ying-hui Wang, Han-zhuang Zhang. Photovoltaic performance and charge recombination dynamics of P3HT/PCBM blend heterojunction. Chemical Research in Chinese Universities, 2013, 29(6): 1185-1188 DOI:10.1007/s40242-013-3152-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang X, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J. Nano Lett., 2005, 5: 579.

[2]

Clarke T M, Durrant J R. Chem. Rev., 2010, 110: 6736.

[3]

Hamilton R, Shuttle C G, Regan B O, Hammant T C, Nelson J, Durrant J R. J. Phys. Chem. Lett., 2010, 1(9): 1432.

[4]

Zhang J, Cai W, Huang F, Wang E, Zhong C, Liu S, Wang M, Duan C, Yang T, Cao Y. Macromolecules, 2011, 44: 894.

[5]

Cai M L, Pan X, Liu W Q, Huo Z P, Chen H W, Zhang C N, Dai S Y. Chem. J. Chinese Universities, 2013, 34(7): 1697.

[6]

Liu Y S, Wang L, Cao Y. Chem. J. Chinese Universities, 2007, 28(3): 596.

[7]

Clarke T M, Ballantyen A M, Nelson J, Bradley D D C, Durrant J R. Adv. Funct. Mater., 2008, 18: 4029.

[8]

Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec C J. Adv. Funct. Mater., 2005, 15: 1193.

[9]

Keivanidis P E, Clarke T M, Lilliu S, Agostinelli T, Macdonald J E, Durrant J R, Bradley D D C, Nelson J. J. Phys. Chem. Lett., 2010, 1: 734.

[10]

Veldman D, Ipek O, Meskers S C J, Sweelssen J, Koetse M M, Veenstra S C, Kroon J M, van Bravel S S, Loos J, Janssen R A J. J. Am. Chem. Soc., 2008, 130: 7721.

[11]

Anderson A Y, Barnes P R F, Durrant J R, O’Regan B C. J. Phys. Chem. C, 2010, 114: 1953.

[12]

Nogueira A F, Montanari I, Nelson J, Durrant J R, Winder C, Sariciftci N S, Brabec C. J. Phys. Chem. B, 2003, 107: 1567.

[13]

Ohkita H, Cook S, Astuti Y, Duffy W, Tierney S, Zhang W, Heeney M, McCulloch I, Nelson J, Bradley D D C, Durrant J R. J. Am. Chem. Soc., 2008, 130: 3030.

[14]

Maurano A, Shuttle C G, Hamilton R, Ballantyne A M, Nelson J, Zhang W, Heeney M, Durrant J R. J. Phys. Chem. C, 2011, 115: 5947.

[15]

Clarke T M, Jamieson F C, Durrant J R. J. Phys. Chem. C, 2009, 113: 20934.

[16]

Soon Y W, Clarke T M, Zhang W, Agostinelli T, Kirkpatrick J, Dyer-Smith C, McCulloch I, Nelson J, Durrant J R. Chem. Sci., 2011, 2: 1111.

[17]

Tachiya M. J. Chem. Phys., 1988, 89: 6929.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/