Dynamic properties of polyampholyte hydrogel elucidated by proton NMR spin-spin relaxation time

Cui-ge Lu , Kun Xu , Wen-bo Li , Peng-chong Li , Ying Tan , Pi-xin Wang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1203 -1207.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1203 -1207. DOI: 10.1007/s40242-013-3151-2
Article

Dynamic properties of polyampholyte hydrogel elucidated by proton NMR spin-spin relaxation time

Author information +
History +
PDF

Abstract

1H spin-spin relaxation time(T 2) measurement of polyampholyte hydrogel poly(methylacrylic acidacryloyloxyethyl trimethylammonium chloride)[P(MA-DAC)] in different pH, ionic strength and temperature was carried out to reveal the molecular mobility. Spontaneous volume transition of the polyampholyte hydrogel was also investigated by spin-spin relaxation time measurement. Meanwhile T 2 and the proton component fraction were acquired to study the swelling behaviour of the hydrogel. Moreover the changes of T 2 characterized the molecular mobility of polyampholyte hydrogel in various swelling states. And the results suggest that the mobility of the main chains and a few free side chains(the long T 2) of P(MA-DAC) was dominated by the mesh size in the hydrogel network, depending on the swelling ratio(Q) and the mobility of the side chains(the short T 2) was influenced by electrostatic interaction between different charges in polymer side chains. Finally the T 2 measurements of P(MA-DAC) hydrogel in the spontaneous swelling-deswelling process demonstrated the electrostatic interaction of the charged side chains caused deswelling behavior. At the same time, the mobility state transition temperature of the charged side chains was also studied by the 1H spin-spin relaxation time measurements, and the transition activation energy of the side chains is 2.72 kJ.

Keywords

Spin-spin relaxation time / Molecular mobility / Polyampholyte hydrogel / Swelling behavior

Cite this article

Download citation ▾
Cui-ge Lu, Kun Xu, Wen-bo Li, Peng-chong Li, Ying Tan, Pi-xin Wang. Dynamic properties of polyampholyte hydrogel elucidated by proton NMR spin-spin relaxation time. Chemical Research in Chinese Universities, 2013, 29(6): 1203-1207 DOI:10.1007/s40242-013-3151-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mafé S, Manzanares J A, English A E, Tanaka T. Physical Review Letters, 1997, 79: 3086.

[2]

Shibayama M, Tanaka T, Dušek K. Advances in Polymer Science, Vol.109, volume Phase Transition and Related Phenomena of Polymer Gels, in Responsive Gels: Volume Transition I, 1993, Heidelberg: Springer Berlin.

[3]

Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J. Physical Review Letters, 1985, 55: 2455.

[4]

Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, Tang Y, Xu J. Macromolecules, 2006, 39: 6584.

[5]

Kanekiyo Y, Sano M, Iguchi R, Shinkai S. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38: 1302.

[6]

Ramachandran S, Flynn P, Tseng Y, Yu Y B. Chemistry of Materials, 2005, 17: 6583.

[7]

Ando I, Webb G A. Magnetic Resonance in Chemistry, 1986, 24: 557.

[8]

Ogawa K, Nakayama A, Kokufuta E. Langmuir, 2003, 19: 3178.

[9]

Ogawa Y, Ogawa K, Wang B, Kokufuta E. Langmuir, 2001, 17: 2670.

[10]

Corpart J M, Candau F. Macromolecules, 1993, 26: 1333.

[11]

Skouri M, Munch J P, Candau S J, Neyret S, Candau F. Macromolecules, 1994, 27: 69.

[12]

Bratko D, Chakraborty A K. The Journal of Physical Chemistry, 1996, 100: 1164.

[13]

George K A, Wentrup-Byrne E, Hill D J T, Whittaker A K. Biomacromolecules, 2004, 5: 1194.

[14]

Keys K B, Andreopoulos F M, Peppas N A. Macromolecules, 1998, 31: 8149.

[15]

Xu K, Wang J, Chen Q, Yue Y, Zhang W, Wang P. Journal of Colloid and Interface Science, 2008, 321: 272.

[16]

Valencia J, Piérola IF. Journal of Applied Polymer Science, 2002, 83: 191.

[17]

Brereton M G. Macromolecules, 1990, 23: 1119.

[18]

Kanekiyo M, Kobayashi M, Ando I, Kurosu H, Amiya S. Macromolecules, 2000, 33: 7971.

[19]

Krygier E, Lin G, Mendes J, Mukandela G, Azar D, Jones A A, Pathak J A, Colby R H, Kumar S K, Floudas G, Krishnamoorti R, Faust R. Macromolecules, 2005, 38: 7721.

[20]

Novoa-Carballal R, Fernandez-Megia E, Riguera R. Biomacromolecules, 2010, 11: 2079.

[21]

Ohta H, Ando I, Fujishige S, Kubota K. Journal of Polymer Science Part B: Polymer Physics, 1991, 29: 963.

[22]

Pileio G, Guo Y, Pham T N, Griffin J M, Levitt M H, Brown S P. Journal of the American Chemical Society, 2007, 129: 10972.

[23]

Sanefuji T, Ando I, Inoue Y, Uematsu I, Shoji A. Macromolecules, 1985, 18: 583.

[24]

Tolman J R, Al-Hashimi H M, Kay L E, Prestegard J H. Journal of the American Chemical Society, 2001, 123: 1416.

[25]

Vaca Chávez F N, Saalwächter K. Macromolecules, 2011, 44: 1560.

[26]

Baranowska H M, Sikora M, Kowalski S, Tomasik P. Food Hydrocolloids, 2008, 22: 336.

[27]

Gao S, Chapman W G, House W. Journal of Magnetic Resonance, 2009, 197: 208.

[28]

Roudaut G, Farhat I, Poirier-Brulez F, Champion D. Carbohydrate Polymers, 2009, 77: 489.

[29]

Valentín J L, López D, Hernández R, Mijangos C, Saalwächter K. Macromolecules, 2008, 42: 263.

[30]

Sui Z, Jaber J A, Schlenoff J B. Macromolecules, 2006, 39: 8145.

[31]

Zhao Y, Su H, Fang L, Tan T. Polymer, 2005, 46: 5368.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/