Facile solution-based synthesis and optical properties of Co3O4 nanoparticles at low-temperature

Yun-ling Li , Jing-zhe Zhao , Yan Zhao , Xin-li Hao , Zhen-yu Hou

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1040 -1044.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1040 -1044. DOI: 10.1007/s40242-013-3137-0
Article

Facile solution-based synthesis and optical properties of Co3O4 nanoparticles at low-temperature

Author information +
History +
PDF

Abstract

Cobalt oxide(Co3O4) with different morphologies was achieved by a simple solution-based method. Various parallel experiments show that several experimental parameters, such as the concentrations of NaOH and ethylene glycol(EG), play important roles in the morphological controlling of Co3O4 nanoparticles. A lower concentration of NaOH favors quasi-spherical product with a uniform size of about 15 nm, whereas a higher concentration of NaOH generally leads to the formation of nanoplates with wide size distribution. In addition, Co3O4 nanorods were also obtained partially by introducing a certain amount of EG. A possible mechanism was proposed for the selective formation of Co3O4 with various morphologies. X-Ray diffraction(XRD), infrared(IR) spectrometry, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and UV-Vis spectrometry were used to characterize the samples.

Keywords

Cobalt oxide / Solution-based synthesis / Nanostructure / Optical property

Cite this article

Download citation ▾
Yun-ling Li, Jing-zhe Zhao, Yan Zhao, Xin-li Hao, Zhen-yu Hou. Facile solution-based synthesis and optical properties of Co3O4 nanoparticles at low-temperature. Chemical Research in Chinese Universities, 2013, 29(6): 1040-1044 DOI:10.1007/s40242-013-3137-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu C C, Wu Y T, Chang K H. Chem. Mater., 2008, 20: 2890.

[2]

Park J C, Kim J, Song H. Adv. Mater., 2009, 21: 803.

[3]

Zhao Y, Zhao J Z, Li Y L, Ma D C, Hou S N, Li L Z, Hao X L, Wang Z C. Nanotechnology, 2011, 22: 115604.

[4]

Sun J B, Xu J, Wang B, Sun P, Liu F M, Lu G Y. Chem. Res. Chinese Universities, 2012, 28(3): 483.

[5]

Wang X, Sumboja A, Khoo E, Yan C, Lee P S. J. Phys. Chem. C, 2012, 116: 4930.

[6]

Yang J H, Sasaki T. Cryst. Growth Des., 2010, 10: 1233.

[7]

Li Y G, Tan B, Wu Y Y. Nano Lett., 2008, 8: 265.

[8]

Wang X, Sumboja A, Khoo E, Yan C, Lee P S. J. Phys. Chem. C, 2012, 116: 4930.

[9]

Teng F, Yao W Q, Zheng Y F, Ma Y T, Xu T G, Gao G Z, Liang S H, Teng Y, Zhu Y F. Talanta, 2008, 76: 1058.

[10]

Zhu J J, Kailasam K, Fischer A, Thomas A. ACS Catal., 2011, 1: 342.

[11]

Yang M Z, Dai C L, Shih P J, Chen Y C. Microelectron. Eng., 2011, 88: 1742.

[12]

Wang H T, Zhang L, Tan X H, Holt C M B, Zahiri B, Olsen B C, Mitlin D. J. Phys. Chem. C, 2011, 115: 17599.

[13]

Meher S K, Rao G R. J. Phys. Chem. C, 2011, 115: 25543.

[14]

Varghese B, Hoong T C, Zhu Y W, Reddy M V, Chowdari B V R, Wee A T S, Vincent T B C, Lim C T, Sow C H. Adv. Funct. Mater., 2007, 17: 1932.

[15]

Xu H Y, Cui D L, Cao B Q. Chem. Res. Chinese Universities, 2012, 28(6): 1086.

[16]

Dong Q, Kumada N, Yonesaki Y, Takei T, Kinomura N. Mater. Res. Bull., 2011, 46: 1156.

[17]

Sharma S, Garg N, Ramanjachary K V, Lofland S E, Ganguli A K. Crys. Growth Des., 2012, 12: 4202.

[18]

Du N, Zhang H, Chen B D, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D R, Huang X H, Tu J P. Adv. Mater., 2007, 19: 4505.

[19]

Ding Y S, Xu L P, Chen C H, Shen X F, Suib S L. J. Phys. Chem. C, 2008, 112: 8177.

[20]

Kim D Y, Ju S H, Koo H Y, Hong S K, Kang Y C. J. Alloys Compd., 2006, 417: 254.

[21]

Baydi M E, Poillerat G, Rehspringer J L, Gautier J L, Koenig J F, Chartier P. J. Solid State Chem., 1994, 109: 281.

[22]

Wang G X, Shen X P, Horvat J, Wang B, Liu H, Wexler D. J. Phys. Chem. C, 2009, 113: 4357.

[23]

Jiao Q Z, Fu M, You C, Zhao Y, Li H S. Inorg. Chem., 2012, 51: 11513.

[24]

He T, Chen D R, Jiao X L, Wang Y L. Adv. Mater., 2006, 18: 1078.

[25]

Huang H, Zhu W J, Tao X Y, Xia Y, Yu Z Y, Fang J W, Gan Y P, Zhang W. ACS Appl. Mater. Interfaces, 2012, 4: 5974.

[26]

Feng J, Zeng H C. J. Phys. Chem. B, 2005, 109: 17113.

[27]

Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X Y, Kong X K, Chen Q W. J. Phys. Chem. C, 2012, 116: 7227.

[28]

Liu Y, Wang G, Xu C, Wang W. Chem. Commun., 2002, 14: 1486.

[29]

Zhuo L H, Ge J C, Cao L H, Tang B. Cryst. Growth Des., 2009, 9: 1.

[30]

He T, Chen D R, Jiao X L. Chem. Mater., 2004, 16: 737.

[31]

He T, Chen D R, Jiao X L, Xu Y Y, Gu Y X. Langmuir, 2004, 20: 8404.

[32]

Xu R, Zeng H C. J. Phys. Chem. B, 2003, 107: 926.

[33]

Cheng J P, Chen X, Ma R, Liu F, Zhang X B. Mater. Charact., 2011, 62: 775.

[34]

Li Y L, Zhao J Z, Dan Y Y, Ma D C, Zhao Y, Hou S N, Lin H B, Wang Z C. Chem. Eng. J., 2011, 166: 428.

[35]

Xu R, Zeng H C. J. Phys. Chem. B, 2003, 107: 926.

[36]

Fan L, Guo R. Cryst. Growth Des., 2008, 8: 2150.

[37]

Xie X W, Shang P J, Liu Z Q, Y G, Li Y, Shen W J. J. Phys. Chem. C, 2010, 114: 2116.

[38]

Xu R, Zeng H C. Langmuir, 2004, 20: 9780.

[39]

Farhadi S, Safabakhsh J. J. Alloys Comp., 2012, 515: 180.

[40]

Barakat N A M, Khil M S, Sheikh F A, Kim H Y. J. Phys. Chem. C, 2008, 112: 12225.

[41]

He T, Chen D R, Jiao X L, Wang Y L, Duan Y Z. Chem. Mater., 2005, 17: 4023.

[42]

Wang G X, Shen X P, Horvat J, Wang B, Liu H, Wexler D, Yao J. J. Phys. Chem. C, 2009, 113: 4357.

[43]

Kumar R V, Diamant Y, Gedanken A. Chem. Mater., 2000, 12: 2301.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/