Influence of early-staged energy barrier on stereodynamics of reaction of LiH(ν=0, j=0)+H→Li + H2

Guang-yan Sha , Jiu-chuang Yuan , Chang-gong Meng , Mao-du Chen

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 956 -961.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 956 -961. DOI: 10.1007/s40242-013-3134-3
Article

Influence of early-staged energy barrier on stereodynamics of reaction of LiH(ν=0, j=0)+H→Li + H2

Author information +
History +
PDF

Abstract

Theoretical studies of stereodynamics for reaction LiH(ν=0, j=0)+H→Li+H2 have been carried out with quasiclassical trajectory method on two potential energy surfaces(PESs) structured as W-PES and P-PES. The main difference of the two PESs is at fixed angle of Li-H-H from 110° to 180°. In this angle range, there is an early-staged energy barrier on the P-PES, but there is no barrier on the W-PES. Some studies have been done to explore the influence of the early-staged energy barrier on this exothermic reaction. Integral cross sections, differential cross sections and product rotational angular momentum of the reaction have been calculated. When E c<0.48 eV, the dominant influence of barrier is to restrain reacting. However, when E c>0.48 eV, the dominant influence of barrier is to promote reacting. The angular distribution of the product H2 is extremely forward on both the PESs, because the lifetime of most complexes is short. Totally, the lifetime on the P-PES is longer than that on W-PES for the existence of the barrier. With the collision energy increasing, on the both PESs, the distribution of the direction of the product H2 angular momentum changed, and there is a trend that peak at (90°,270°) gets weaker and peak at (90°,90°) gets stronger. The energy barrier weakens the degree of the rotation alignment of the H2.

Keywords

Stereodynamics / Quasiclassical trajectory method / Product rotational polarization

Cite this article

Download citation ▾
Guang-yan Sha, Jiu-chuang Yuan, Chang-gong Meng, Mao-du Chen. Influence of early-staged energy barrier on stereodynamics of reaction of LiH(ν=0, j=0)+H→Li + H2. Chemical Research in Chinese Universities, 2013, 29(5): 956-961 DOI:10.1007/s40242-013-3134-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bodo E, Gianturco F A, Martinazzo R. Phys. Rep., 2003, 384: 85.

[2]

Lepp S, Shull J M. Astrophys. J., 1984, 280: 465.

[3]

Lepp S, Stancil P C, Dalgarno A. J. Phys. B: At. Mol. Opt. Phys, 2002, 35: R57.

[4]

Dubrovich V K, Lipovka A A. Astr. Astroph., 1995, 296: 301.

[5]

Galli D, Palla F. Astr. Astroph., 1998, 335: 403.

[6]

Stancil P C, Dalgarno A. Astrophys. J., 1997, 479: 543.

[7]

Stancil P C, Lepp S, Dalgarno A. Astrophys. J., 1996, 458: 401.

[8]

Bovino S, Tacconi M, Gianturco F A, Galli D, Palla F. Astrophys. J., 2011, 731: 107.

[9]

Defazio P, Petrongolo C, Gamallo P, Gonzalez M. J. Chem. Phys., 2005, 122: 214303.

[10]

Dunne L J, Murrell J N, Jemmer P. Chem. Phys. Lett., 2001, 336: 1.

[11]

Kim K H, Lee Y S, Ishida T, Jeung G H. J. Chem. Phys., 2003, 119: 4689.

[12]

Liu Y, He X, Shi D, Sun J. Comput. Theor. Chem., 2011, 965: 107.

[13]

Liu Y, He X, Shi D, Sun J. Eur. Phys. J. D, 2011, 61: 349.

[14]

Padmanaban R, Mahapatra S. J. Chem. Phys., 2002, 117: 6469.

[15]

Prudente F V, Marques J, Maniero A M. Chem. Phys. Lett., 2009, 474: 18.

[16]

Roy T, Mahapatra S. J. Chem. Phys., 2012, 136: 174313.

[17]

Wernli M, Caruso D, Bodo E, Gianturco F A. J. Phys. Chem. A, 2009, 113: 1121.

[18]

Chen M D, Han K L, Lou N Q. J. Chem. Phys., 2003, 118: 4463.

[19]

Wang M L, Han K L, He G Z. J. Phys. Chem. A, 1998, 102: 10204.

[20]

Yang T G, Yuan J C, Cheng D H, Chen M D. Commn. Comput. Chem., 2013, 1: 15.

[21]

Chen M D, Tang B Y, Han K L, Lou N Q. Chem. Phys. Lett., 2001, 337: 349.

[22]

Chen M D, Tang B Y, Han K L, Lou N Q, Zhang J Z H. J. Chem. Phys., 2003, 118: 6852.

[23]

Gonzalez M, Sierra J D, Francia R, Sayos R. J. Phys. Chem. A, 1997, 101: 7513.

[24]

Fano U, Macek J H. Rev. Mod. Phys., 1973, 45: 553.

[25]

Barnwell J D, Loeser J G, Herschbach D R. J. Phys. Chem., 1983, 87: 2781.

[26]

Case D A, Herschbach D R. Mol. Phys., 1975, 30: 1537.

[27]

McClelland G M, Herschbach D R. J. Phys. Chem., 1979, 83: 1445.

[28]

Orrewing A J, Zare R N. Annu. Rev. Phys. Chem., 1994, 45: 315.

[29]

Duan Z X, Qi Y, Lu Y C. Mol. Phys., 2008, 106: 2725.

[30]

Han K L, He G Z, Lou N Q. J. Chem. Phys., 1996, 105: 8699.

[31]

Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q. Chem. Phys. Lett., 1994, 220: 281.

[32]

Shaferray N E, Orrewing A J, Zare R N. J. Phys. Chem., 1995, 99: 7591.

[33]

Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D. J. Phys. Chem. A, 2009, 113: 4192.

[34]

Brouard M, Lambert H M, Rayner S P, Simons J P. Mol. Phys., 1996, 89: 403.

[35]

Xu X S, Zhang W Q, Duan L H, Chen M D. Chem. J. Chinese Universities, 2010, 31(5): 1034.

[36]

Nie S S, Chu T S. Chem. Res. Chinese Universities, 2012, 28(5): 897.

[37]

Zhang Z H, Chen M D, Cong S L. Chem. Res. Chinese Universities, 2008, 24(2): 223.

[38]

Zhang Z H, Chen M D, Cong S L. Chem. J. Chinese Universities, 2008, 29(3): 596.

[39]

Padmanaban R, Mahapatra S. J. Chem. Phys., 2004, 120: 1746.

[40]

Padmanaban R, Mahapatra S. J. Chem. Phys., 2004, 121: 7681.

[41]

Chen M D, Han K L, Lou N Q. Chem. Phys., 2002, 283: 463.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/