Preparation of (2E)-3-(4′-halophenyl)prop-2-enoyl sulfachlorpyridazine sodium salts and their interaction with bovine serum albumin by fluorescence spectroscopy

Chuan-rong Du , Xuan Luo , Jin-rui Wei , Ting-ting He , Xiao-yu Zheng , Cui-wu Lin

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 854 -860.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 854 -860. DOI: 10.1007/s40242-013-3128-1
Article

Preparation of (2E)-3-(4′-halophenyl)prop-2-enoyl sulfachlorpyridazine sodium salts and their interaction with bovine serum albumin by fluorescence spectroscopy

Author information +
History +
PDF

Abstract

Three (2E)-3-(4′-halophenyl)prop-2-enoyl sulfachlorpyridazine sodium salts(XPSCA) were synthesized. Their chemical structures were confirmed by 1H NMR and 13C NMR, electrospray ionization mass spectrometry (ESI-MS), and infrared(IR) spectroscopy. The interactions between XPSCA and bovine serum albumin(BSA) were investigated under imitated physiological condition by fluorescence quenching technique and UV-Vis absorption spectroscopy according to the Stern-Volmer equation. The results from the emission quenching at different temperatures indicate that the quenching mechanism of serum albumin by XPSCA was static quenching mechanism at low XPSCA concentrations or a combined quenching(static and dynamic) mechanism at higher XPSCA concentrations. At different temperatures, the binding constant and the binding sites of XPSCA with BSA were investigated, and the distances were evaluated according to Förster non-radiative resonance energy transfer theory. The thermodynamic parameters were calculated according to van’t Hoff equation, which implies that both van der Waals interaction and hydrogen bond played major roles in stabilizing the XPSCA-BSA complexes, whereas hydrophobic interactions were secondary. Moreover, the conformational changes in BSA were analyzed by synchronous fluorescence spectra.

Keywords

Sulfachlorpyridazine sodium / Bovine serum albumin / Halo-cinnamic acid / Fluorescence spectroscopy

Cite this article

Download citation ▾
Chuan-rong Du, Xuan Luo, Jin-rui Wei, Ting-ting He, Xiao-yu Zheng, Cui-wu Lin. Preparation of (2E)-3-(4′-halophenyl)prop-2-enoyl sulfachlorpyridazine sodium salts and their interaction with bovine serum albumin by fluorescence spectroscopy. Chemical Research in Chinese Universities, 2013, 29(5): 854-860 DOI:10.1007/s40242-013-3128-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He X M, Carter D C. Nature, 1992, 358(6383): 209.

[2]

Dockal M, Carter D C, Ruker F. J. Biol. Chem., 2000, 275(5): 3042.

[3]

Choi J K, Ho J, Curry S, Qin D, Bittman R, Hamilton J A. J. Lipid Res., 2002, 43(7): 1000.

[4]

Zhang Y, Wilcox D E. J. Biol. Inorg. Chem., 2002, 7(3): 327.

[5]

Zhang J X, Yin Z N, Wu W, Wang Z X, He R, Wu Z X. Chem. Res. Chinese Universities, 2012, 28(6): 963.

[6]

Guharay J, Sengupta B, Sengupta P K. Proteins, Struct., Funct., Genet., 2001, 43(2): 75.

[7]

Guo X J, Sun X D, Xu S K. J. Mol. Struct., 2009, 931(1–3): 55.

[8]

Adisakwattana S, Moonsan P, Yibchok-anun S. J. Agric. Food Chem., 2008, 56(17): 7838.

[9]

Singh T S, Mitra S. Spectrochim. Acta, Part A, 2011, 78(3): 942.

[10]

Tan F L, Ning Z X. Guangzhou Chemistry, 1996, 2: 32.

[11]

Peng S. Medicinal Chemistry, 1988, Beijing: Chemical Industry Press 196.

[12]

Papadopoulou A, Green R J, Frazier R A. J. Agric. Food Chem., 2005, 53(1): 158.

[13]

Hu Y J, Liu Y, Zhang L X, Zhao R M, Qu S S. J. Mol. Struct., 2005, 750(1–3): 174.

[14]

Eftink M R, Ghiron C A. Biochemistry, 1976, 15(3): 672.

[15]

Lakowicz J R. Principles of Fluorescence Spectroscopy, 2006, New York: Springer 205.

[16]

Zhao G J, Han K L. Acc. Chem. Res., 2012, 45(3): 404.

[17]

Bi S, Sun Y, Qiao C, Zhang H, Liu C. J. Lumin., 2009, 129(5): 541.

[18]

Yuan T, Weljie A M, Vogel H J. Biochemistry, 1998, 37(9): 3187.

[19]

Yu X, Liu R, Yi R, Yang F, Huang H, Chen J, Ji D, Yang Y, Li X, Yi P. Spectrochim. Acta A, 2011, 78(4): 1329.

[20]

Xu H, Gao S, J, Liu Q, Zuo Y, Wang X. J. Mol. Struct., 2009, 919(1–3): 334.

[21]

Yang S P, Han L J, Pan Y, Wang D Q, Wang N N, Wang T. Chem. J. Chinese Universities, 2013, 34(2): 364.

[22]

He N, Zhong F C, Shu Y J, Zhang Y, Sui H L, Hao X F. Chinese Journal of Energetic Materials, 2012, 1: 44.

[23]

Gan X J, Liu S P, Liu Z F, Hu X L. Chem. J. Chinese Universities, 2012, 33(4): 683.

[24]

Tang J, Luan F, Chen X. Bioorg. Med. Chem., 2006, 14(9): 3210.

[25]

Zhang Y Z, Xiang X, Mei P, Dai J, Zhang L L, Liu Y. Spectrochim. Acta A, 2009, 72(4): 907.

[26]

Ross P D, Subramanian S. Biochemistry, 1981, 20(11): 3096.

[27]

Kang J, Liu Y, Xie M X, Li S, Jiang M, Wang Y D. Biochim. Biophys. Acta, Gen. Subj., 2004, 1674(2): 205.

[28]

Naik P N, Chimatadar S A, Nandibewoor S T. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2009, 73(5): 841.

[29]

Lei H T, Tang Q S, Huang W K, Chen S T, Liu Y J, Sun Y M. Chin. J. Anal. Chem., 2012, 40(8): 1231.

[30]

Weiss S. Science, 1999, 283(5408): 1676.

[31]

Yue Y, Chen X, Qin J, Yao X. Dyes Pigm., 2008, 79(2): 176.

[32]

Congdon R W, Muth G W, Splittgerber A G. Anal. Biochem., 1993, 213(2): 407.

[33]

Klajnert B, Bryszewska M. Bioelectrochemistry, 2002, 55(1/2): 33.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/