Influnence of sodium polyacrylate on crystallization and aggregation of butterfly-like calcium carbonate

Li-na Zhao , Ji-ku Wang , Zi-chen Wang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 969 -973.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 969 -973. DOI: 10.1007/s40242-013-3125-4
Article

Influnence of sodium polyacrylate on crystallization and aggregation of butterfly-like calcium carbonate

Author information +
History +
PDF

Abstract

Butterfly-like calcium carbonate(CaCO3) particles were successfully prepared via a facile precipitation reaction of Na2CO3 with CaCl2 in the presence of sodium polyacrylate(PAAS). The as-prepared samples were characterized with field emission scanning electron microscopy(FESEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FTIR). Butterfly-like CaCO3 particles composed of three segment rods were obtained. Rod aggregates would act as the template for butterfly-like CaCO3 crystals consisted of regular shaped crystallites with 150–200 nm in diameter. The influences of reaction temperature, the amount of PAAS and reaction time on the nucleation and growth of CaCO3 crystals were investigated. The possible growth mechanism of CaCO3 crystals was discussed. This research can not only make us further understand the general principles of the reaction, but also open up a new avenue of industrial production of CaCO3 particles with exquisite and unique morphologies.

Keywords

Butterfly-like calcium carbonate / Aragonite / Sodium polyacrylate(PAAS) / Crystallization

Cite this article

Download citation ▾
Li-na Zhao, Ji-ku Wang, Zi-chen Wang. Influnence of sodium polyacrylate on crystallization and aggregation of butterfly-like calcium carbonate. Chemical Research in Chinese Universities, 2013, 29(5): 969-973 DOI:10.1007/s40242-013-3125-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu D, Chu Y, Dong L H, Zhou Y J. Chem. Res. Chinese Universities, 2010, 26(5): 678.

[2]

Grassmann O, Muller G, Lobmann P. Chem. Mater., 2002, 14: 4530.

[3]

Trana H, Tranb L, Vua H, Thai H. Colloids Surfaces A: Physicochem. Eng. Aspects, 2010, 366: 95.

[4]

Pokroy B, Zolotoyabko E, Adir N. Biomacromolecules, 2006, 7: 550.

[5]

Jadaa A, Akboura R A, Jacquemetb C, Suaub J M, Guerret O. J. Cryst. Growth, 2007, 306: 373.

[6]

Pan Y, Guo Y P, Zhao X, Wang Z C. Chem. Res. Chinese Universities, 2012, 28(4): 737.

[7]

Wei H, Shen Q, Zhao Y, Zhou Y, Wang D J, Xu D F. J. Cryst. Growth, 2005, 279: 439.

[8]

Tran D L, Tran V H, Duong T Q, Kim J S. Mater. Sci. Eng. A, 2009, 501: 87.

[9]

Damle C, Kumar A, Sainkar S R, Bhagawat M, Sastry M. Langmuir, 2002, 18: 6075.

[10]

Zhu W K, Luo X G, Zhang C, Duan T, Zhou J. Chem. Res. Chinese Universities, 2012, 28(2): 180.

[11]

Kim W S, Hirasawa I, Kim W S. Ind. Eng. Chem. Res., 2004, 43: 2650.

[12]

Chen X Y, Tang Q, Hu W B, Dan Y M, Zhou G Y. Chem. J. Chinese Universities, 2010, 31(10): 1940.

[13]

Weiner S, Addadi L. Mater. Chem., 1997, 7: 689.

[14]

Eloneva S, Said A, Fogelholm C J, Zevenhoven R. Applied Energy, 2012, 90: 329.

[15]

Wada N, Yamashita K, Umegaki T. J. Cryst. Growth, 1995, 148: 297.

[16]

Gou X H, Yu S H, Cai G B. Angew. Chem. Int. Ed., 2006, 45: 3977.

[17]

Zhang L, Jiang F H, MA G R, Zhuang Q F L F. Chem. Res. Chinese Universities, 2011, 27(5): 875.

[18]

Kontopoulou M, Parent J S. Polymer, 2007, 48: 4520.

[19]

Wada N, Okazaki M, Tachikawa S. J. Cryst. Growth, 1993, 132: 115.

[20]

Szcześ A, Chibowski E, HoŁysz L. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 297: 14.

[21]

Mann S. Nature, 1993, 365: 499.

[22]

Pan Y, Zhao X, Sheng Y, Wang C Y, Deng Y H, Ma X K, Liu Y H, Wang Z C. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 297: 198.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/