Efficient hybrid photovoltaic devices based on in-situ electrochemical copolymerization of 3-methylthiophene and bithiophene into pores of nanocrystalline TiO2

Sheng-li Lu , Rui Geng

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1208 -1213.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1208 -1213. DOI: 10.1007/s40242-013-3116-5
Article

Efficient hybrid photovoltaic devices based on in-situ electrochemical copolymerization of 3-methylthiophene and bithiophene into pores of nanocrystalline TiO2

Author information +
History +
PDF

Abstract

Novel organic and inorganic hybrid photovoltaic devices were fabricated by in-situ electrochemical copolymerization of 3-methylthiophene(3MT) and bithiophene(BT) into the pores of nanostructured TiO2 sintered on fluorine-doped tin oxide(FTO) substrate. The photoactive layer was investigated by Fourier transform infrared(FTIR) spectroscopy, ultraviolet-visable(UV-Vis) spectrometer, scanning electron microscope(SEM) and cyclic voltammogram characterization. Device efficiency based on different molar feed ratios of 3MT and BT during electrochemical polymerization, and the effect of in-situ copolymer state(doped by electrolyte and de-doped) were measured and compared. Under the solar illumination of 100 mW/cm2(AM1.5), an optimized device efficiency of 0.938% was obtained when the molar ratio of 3MT to BT was 500:1, polymerization time was 500 s and the system was in doped copolymer state, respectively. The mechanism of overall photovoltaic parameter improvement was discussed.

Keywords

In-situ electrochemical polymerization / Hybrid photovoltaic device / Photovoltaic characterization

Cite this article

Download citation ▾
Sheng-li Lu, Rui Geng. Efficient hybrid photovoltaic devices based on in-situ electrochemical copolymerization of 3-methylthiophene and bithiophene into pores of nanocrystalline TiO2. Chemical Research in Chinese Universities, 2013, 29(6): 1208-1213 DOI:10.1007/s40242-013-3116-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen S J, Zhang Q Y, Zhang J P, Gu J W, Zhou J, Shi Y Q. Chem. Res. Chinese Universities, 2011, 27(6): 906.

[2]

Hao Y Z, Cao Y H, Sun B, Zhang Y H, Li Y P, Xu D S, Li X L. Acta Chimica Sinica, 2012, 70(10): 1139.

[3]

Huang X W, Deng J Y, Xu L, Shen P, Zhao B, Tan S T. Acta Chimica Sinica, 2012, 70(15): 1604.

[4]

Coakley K M, Liu Y X, McGehee M D, Frindell K L, Stucky G D. Adv. Funct. Mater., 2003, 13: 301.

[5]

Ravirajan P, Haque S A, Durrant J R, Poplavskyy D, Bradley D D C, Nelson J. J. Appl. Phys., 2004, 95: 1473.

[6]

van Hal P A, Wienk M M, Kroon J M, Verhees W J H, Slooff L H, van Gennip W J H, Jonkheijm P, Janssen R A J. Adv. Mater., 2003, 15: 118.

[7]

Lu S L, Zeng L, Wu T, Ren B F, Niu J F, Liu H Y, Zhao X L, Mao J W. Sol. Energy, 2011, 85: 1967.

[8]

Krebs F C. Sol. Energy Mater. Sol. Cells, 2008, 92: 715.

[9]

Liu J S, Kadnikova E N, Liu Y X, McGehee M D, Fréchet J M J. J. Am. Chem. Soc., 2004, 126: 9486.

[10]

Yun D Q, Feng W, Wu H C, Yoshino K. Sol. Energy Mater. Sol. Cells, 2009, 93: 1208.

[11]

Atienzar P, Ishwara T, Horie M, Druuant J R, Nelson J. J. Mater. Chem., 2009, 19: 5377.

[12]

Yuan K, Li F, Chen L, Chen Y W. Thin Solid Films, 2012, 520: 6299.

[13]

Lu S L, Sun S, Jiang X X, Mao J W, Li T H, Wan K X. J. Mater. Sci.: Mater. Electron., 2010, 21: 682.

[14]

Lu S L, Sun S, Niu J F, Zeng L, Liu H Y, Zhao X L. J. Mater. Sci.: Mater. Electron., 2012, 23: 251.

[15]

Lin Y J, Wang L, Chiu W Y. Thin Solid Films, 2006, 511/512: 199.

[16]

Tang H Q, Zhou Z X, Zhong Y B, Liao H X, Zhu L H. Thin Solid Films, 2006, 515: 2447.

[17]

Bazzaoui E A, Aeiyach S, Lacaze P C. Synth. Met., 1996, 83: 159.

[18]

He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y. Adv. Mater., 2011, 23: 4636.

[19]

Liu Y, Summers M A, Edder C, Fréchet J M J, McGehee M D. Adv. Mater., 2005, 17: 2960.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/