Photoinduced charge transfer processes of zinc porphyrin derivatives for dye-sensitized solar cells

Yi-dan Zhao , Jing-jing Fu , Hai-bin Li , Hao Dong , Yi Liao

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 974 -981.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 974 -981. DOI: 10.1007/s40242-013-3084-9
Article

Photoinduced charge transfer processes of zinc porphyrin derivatives for dye-sensitized solar cells

Author information +
History +
PDF

Abstract

We studied the excitation energies of zinc porphyrin(ZnP) and zinc porphyrin analogues(ZnP-R) with long-range corrected(LC) density functional theory. We compared three recent LC functionals, wB97XD, CAM-B3LYP, LC-wPBE and functionals B3LYP with the experiments. It was found that the low energy excitation is well predicted for ZnP with the LC-wPBE functional based on 6-31G(d) basis set. Excited-state geometry optimizations for all the compounds were carried out. It was shown that upon the photo-excitation nearly 1 e transferred to the acceptor unit[dodecafluorosubphthalocyanine, SubPc(F)12] and a highly polarized state formed in compound 5. But after the relaxation of the first excited state, the electron on the acceptor went back to the ZnP a little and then shifted from ZnP to the donor segment[bis(4-hexylphenyl)amino] partially. The computed excited-state radiative lifetime(τ) for compound 5 is 943 μs, which shows a reasonable agreement with the experimental observation. According to the long-lived exciton in strong push-pull compound 5, we proposed that electron injection to semiconductor might occur after vibrational relaxation of excited state.

Keywords

Excitation energy / Long-range corrected(LC) functional / Zinc porphyrin / Zinc porphyrin analogue / Electron injection

Cite this article

Download citation ▾
Yi-dan Zhao, Jing-jing Fu, Hai-bin Li, Hao Dong, Yi Liao. Photoinduced charge transfer processes of zinc porphyrin derivatives for dye-sensitized solar cells. Chemical Research in Chinese Universities, 2013, 29(5): 974-981 DOI:10.1007/s40242-013-3084-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oregan B, Gratzel M. Nature, 1991, 353(6346): 737.

[2]

Nazeeruddin M K, Kay A, Rodicio I, Humphrybaker R, Muller E, Liska P, Vlachopoulos N, Gratzel M. J. Am. Chem. Soc., 1993, 115(14): 6382.

[3]

Gratzel M. Inorg. Chem., 2005, 44(20): 6841.

[4]

Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L Y. Japanese Journal of Applied Physics Part 2: Letters & Express Letters, 2006, 45(24–28): L638.

[5]

Zhang Y H, Zhao W, Jiang P, Zhang L J, Zhang T, Wang J. Spectrochim Acta A: Mol. Biomol. Spectrosc., 2010, 75(2): 880.

[6]

Campbell W M, Burrell A K, Officer D L, Jolley K W. Coordination Chemistry Reviews, 2004, 248(13/14): 1363.

[7]

Hara K, Wang Z S, Sato T, Furube A, Katoh R, Sugihara H, Dan-Oh Y, Kasada C, Shinpo A, Suga S. J. Phys. Chem. B, 2005, 109(32): 15476.

[8]

Walzer K, Maennig B, Pfeiffer M, Leo K. Chemical Reviews, 2007, 107(4): 1233.

[9]

Nazeeruddin M K, Humphry-Baker R, Officer D L, Campbell W M, Burrell A K, Gratzel M. Langmuir, 2004, 20(15): 6514.

[10]

Schmidt-Mende L, Campbell W M, Wang Q, Jolley K W, Officer D L, Nazeeruddin M K, Gratzel M. Chemphyschem, 2005, 6(7): 1253.

[11]

Campbell W M, Jolley K W, Wagner P, Wagner K, Walsh P J, Gordon K C, Schmidt-Mende L, Nazeeruddin M K, Wang Q, Gratzel M, Officer D L. J. Phys. Chem. C, 2007, 111(32): 11760.

[12]

Barone V, Polimeno A. Chemical Society Reviews, 2007, 36: 1724.

[13]

Walsh P J, Gordon K C, Wagner P, Officer D L. Chemphyschem, 2006, 7(11): 2358.

[14]

Walsh P J, Gordon K C, Officer D L, Campbell W M. J. Mole. Struct.(Theochem.), 2006, 759(1–3): 17.

[15]

Balanay M P, Dipaling C V P, Lee S H, Kim D H, Lee K H. Solar Energy Materials and Solar Cells, 2007, 91(19): 1775.

[16]

Balanay M P, Kim D H. Phys. Chem. Chem. Phys., 2008, 10(33): 5121.

[17]

Mozer A J, Wagner P, Officer D L, Wallace G G, Campbell W M, Miyashita M, Sunahara K, Mori S. Chem. Commun., 2008, 4741.

[18]

Bessho T, Zakeeruddin S M, Yeh C Y, Diau E W G, Gratzel M. Angew. Chem. Int. Ed., 2010, 49(37): 6646.

[19]

Lind S J, Gordon K C, Gambhir S, Officer D L. Phys. Chem. Chem. Phys., 2009, 11(27): 5598.

[20]

Huang X B, Shi Q Q, Chen W Q, Zhu C L, Zhou W Y, Zhao Z, Duan X M, Zhan X W. Macromolecules, 2010, 43(23): 9620.

[21]

Hagberg D P, Edvinsson T, Marinado T, Boschloo G, Hagfeldt A, Sun L. Chem. Commun.(Camb), 2006, 2245.

[22]

Dos Santos T, Morandeira A, Koops S, Mozer A J, Tsekouras G, Dong Y, Wagner P, Wallace G, Earles J C, Gordon K C, Officer D, Durrant J R. J. Phys. Chem. C, 2010, 114(7): 3276.

[23]

Fujitsuka M, Shimakoshi H, Hisaeda Y, Majima T. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217(1): 242.

[24]

Chokbunpiam T, Thamyongkit P, Saengsawang O, Hannongbua S. International Journal of Photoenergy, 2010, 492313.

[25]

Lopez R, Menendez M I, Santander-Nelli M, Cardenas-Jiron G I. Theoretical Chemistry Accounts, 2010, 127(5/6): 475.

[26]

El-Khouly M E. Phys. Chem. Chem. Phys., 2010, 12(39): 12746.

[27]

Ma R M, Guo P, Yang L L, Guo L S, Zeng Q H, Liu G Q, Zhang X X. J. Mole. Struct.(Theochem.), 2010, 942(1–3): 131.

[28]

Ma R M, Guo P, Yang L L, Guo L S, Zhang X X, Nazeeruddin M K, Gratzel M. J. Phys. Chem. A, 2010, 114(4): 1973.

[29]

Ren X F, Ren A M, Wang Q, Feng J K. Acta Physico-Chimica Sinica, 2010, 26(1): 110.

[30]

Earles J C, Gordon K C, Stephenson A W I, Partridge A C, Officer D L. Phys. Chem. Chem. Phys., 2011, 13(4): 1597.

[31]

Dreuw A, Head-Gordon M. J. Am. Chem. Soc., 2004, 126(12): 4007.

[32]

Wodrich M D, Corminboeuf C, Schreiner P R, Fokin A A, Schleyer P V. Organic Letters, 2007, 9(10): 1851.

[33]

Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K. J. Chem. Phys., 2004, 120(18): 8425.

[34]

Kamiya M, Sekino H, Tsuneda T, Hirao K. J. Chem. Phys., 2005, 122(23): 234111.

[35]

Chiba M, Tsuneda T, Hirao K. J. Chem. Phys., 2006, 124(14): 144106.

[36]

Pastore M, Mosconi E, de Angelis F, Gratzel M. J. Phys. Chem. C, 2010, 114(15): 7205.

[37]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision A.02, 2009, Wallingford CT: Gaussian Inc.

[38]

Becke A D. Phys. Rev. A, 1988, 38(6): 3098.

[39]

Lee C T, Yang W T, Parr R G. Phys. Rev. B, 1988, 37(2): 785.

[40]

Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Letters, 1989, 157(3): 200.

[41]

Vydrov O A, Scuseria G E. J. Chem. Phys., 2006, 125(23): 234109.

[42]

Vydrov O A, Heyd J, Krukau A V, Scuseria G E. J. Chem. Phys., 2006, 125(7): 074106.

[43]

Vydrov O A, Scuseria G E, Perdew J P. J. Chem. Phys., 2007, 126(15): 154109.

[44]

Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393(1–3): 51.

[45]

Chai J D, Head-Gordon M. Phys. Chem. Chem. Phys., 2008, 10(44): 6615.

[46]

Alessandro A, Norberto M, Chiara M, Filippo D A, Edoardo M, Yum J H, Zhang X X, Mohammad K N, Grätzel M. Energy & Environmental Science, 2009, 2(10): 1094.

[47]

Becke A D. J. Chem. Phys., 1993, 98(2): 1372.

[48]

Adamo C, Barone V. J. Chem. Phys., 1999, 110(13): 6158.

[49]

Adamo C, Barone V. J. Chem. Phys., 1998, 108(2): 664.

[50]

Barone V, Cossi M. J. Phys. Chem. A, 1998, 102(11): 1995.

[51]

Ozarowski A, Lee H M, Balch A L. J. Am. Chem. Soc., 2003, 125(41): 12606.

[52]

Zhang Y H, Zhao W, Jiang P, Zhang L J, Zhang T, Wang J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75(2): 880.

[53]

Meyers F, Marder S R, Pierce B M, Bredas J L. J. Am. Chem. Soc., 1994, 116(23): 10703.

[54]

Dogutan D K, Ptaszek M, Lindsey J S. J. Org. Chem., 2007, 72(13): 5008.

[55]

Labat F, Adamo C. J. Phys. Chem. C, 2007, 111(41): 15034.

[56]

Cahen D, Hodes G, Gratzel M, Guillemoles J F, Riess I. J. Phys. Chem. B, 2000, 104(9): 2053.

[57]

Gouterman M. J. Chem. Phys., 1959, 30(5): 113.

[58]

Zyss J. Molecular Nonlinear Optics: Materials, Physics, and Devices, 1993, Boston: Academic.

[59]

Moran A M, Kelley A M, Tretiak S. Chem. Phys. Lett., 2003, 367(3/4): 293.

[60]

Moser J E, Gratzel M. Chimia, 1998, 52(4): 160.

[61]

Katoh R, Kasuya M, Kodate S, Furube A, Fuke N, Koide N. J. Phys. Chem. C, 2009, 113(48): 20738.

[62]

Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M. J. Phys. Chem. B, 2004, 108(15): 4818.

[63]

Kalyanasundaram K, Gratzel M. Coordination Chemistry Reviews, 1998, 177: 347.

[64]

Katoh R, Furube A, Hara K, Murata S, Sugihara H, Arakawa H, Tachiya M. J. Phys. Chem. B, 2002, 106(50): 12957.

[65]

Litani-Barzilai I, Bulatov V, Gridin V V, Schechter I. Analytica Chimica Acta, 2004, 501(2): 151.

[66]

Chidthong R, Hannongbua S, Aquino A J, Wolschann P, Lischka H. J. Comput. Chem., 2007, 28(10): 1735.

[67]

Lukes V, Aquino A, Lischka H. J. Phys. Chem. A, 2005, 109(45): 10232.

[68]

Lukes V, Aquino A J, Lischka H, Kauffmann H F. J. Phys. Chem. B, 2007, 111(28): 7954.

[69]

Meeto W, Suramitr S, Vannarat S, Hannongbua S. Chem. Phys., 2008, 349(1–3): 1.

[70]

El-Khouly M E, Ryu J B, Kay K Y, Ito O, Fukuzumi S. J. Phys. Chem. C, 2009, 113(34): 15444.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/