Purification and characterization of two thermostable glucoamylases produced from Aspergillus niger B-30

Yang Liu , Quan-shun Li , Hong-liang Zhu , Zhao-li Meng , Hong-yu Xiang , Qiu-hong Xie

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 917 -923.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 917 -923. DOI: 10.1007/s40242-013-3074-y
Article

Purification and characterization of two thermostable glucoamylases produced from Aspergillus niger B-30

Author information +
History +
PDF

Abstract

Two thermostable glucoamylases were produced from Aspergillus niger B-30 by submerged fermentation. The two glucoamylases GAM-1 and GAM-2 were purified by ammonium sulfate precipitation, diethylaminoethyl-cellulose fast flow(DEAE FF) and Superdex G-75 gel filtration columns. The molecular weights of GAM-1 and GAM-2 were determined as 9.72×104 and 7.83×104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), while the molecular weights of GAM-1 and GAM-2 were determined to be 8.05×104 and 7.04×104 by matrix assisted laser desorption ionizationtime-of-flight(MALDI-TOF) mass spectrometry, respectively. Both the enzymes were glycosylated, with 10.4% and 11.4% carbohydrate content, respectively. The optimal pH and temperature were 4.0–4.6 and 70 °C for both. The two glucoamylases were maintained 100% relative activity after incubation at 60 °C for 120 min. After the hydrolysis of starch for 120 min, glucose was the only product, confirming that the two enzymes were of high efficiency towards starch. The GAM-2 exhibited higher catalytic activity towards oligosaccharides such as maltose than GAM-1, and the kinetic analysis shows that the affinity of GAM-2 to starch was lower than that of GAM-1. The high thermostability and effectiveness make the two glucoamylases potentially attractive for biotechnological application.

Keywords

Glucoamylase / Thermostability / Kinetic analysis / Glycosylation

Cite this article

Download citation ▾
Yang Liu, Quan-shun Li, Hong-liang Zhu, Zhao-li Meng, Hong-yu Xiang, Qiu-hong Xie. Purification and characterization of two thermostable glucoamylases produced from Aspergillus niger B-30. Chemical Research in Chinese Universities, 2013, 29(5): 917-923 DOI:10.1007/s40242-013-3074-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Riaz M, Rashid M H, Sawyer L, Akhtar S, Javed M R, Nadeem H, Wear M. Food Chem., 2012, 130: 24.

[2]

Negi S, Banerjee R. Biotechnol. Bioproc. E., 2009, 14: 60.

[3]

Pavezzi F C, Carneiro A A J, Bocchini-Martins D A, Alves-Prado H F, Ferreira H, Martins P M, Gomes E, Silva R D. Appl. Biochem. Biotechnol., 2011, 163: 14.

[4]

Mertens J A, Skory C D. Enzyme Microb. Technol., 2007, 40: 874.

[5]

Kumar P, Satyanarayana T. Crit. Rev. Biotechnol., 2009, 29: 225.

[6]

Boel E, Hjort I, Svensson B, Norris F, Norris K E, Fiil N P. EMBO J., 1984, 3: 1097.

[7]

da Silva T M, Maller A, de Lima Damasio A R, Michelin M, Terenzi H F, Lourdes M, Polizeli T M. J. Ind. Microbiol. Biotechnol., 2009, 36: 1439.

[8]

Kumar P, Satyanarayana T. Appl. Biochem. Biotechnol., 2009, 158: 113.

[9]

Wang Y, Fuchs E, Silva R, McDaniel A, Seibel J, Ford C. Starch-Starke, 2006, 58: 501.

[10]

McDaniel A, Fuchs E, Liu Y, Ford C. Microb. Biotechnol., 2008, 1: 523.

[11]

Awad G, Florence M, Yannick C, Lebrihi A. Can. J. Microbio., 2005, 51: 59.

[12]

Wu L Q, Zhang J, Sun R G, Jiang S F, Wang Y L, Dai J J. Chem. J. Chinese Universities, 2011, 32(12): 2812.

[13]

Miller G L. Anal. Chem., 1959, 31: 426.

[14]

Zhang N, Liu Y, Lu J H, Wang J, Yang S, Zhang N, Meng Q F, Teng L R. Chem. Res. Chinese Universities, 2012, 28(2): 249.

[15]

Stoffer B, Frandsen T P, Busk P K, Schneider P, Svendsen I, Svensson B. Biochem. J., 1993, 292: 197.

[16]

Aalbaek T, Reeslev M, Jensen B, Eriksen S H. Enzyme Microb. Technol., 2002, 30: 410.

[17]

Thor S H, Johnsen A H, Josefsen K, Jensen B. Biochim. Biophys. Acta, 2006, 1764: 671.

[18]

Michelin M, Ruller R, Ward R J, Moraes A B, Jorge J A, Terenzi H F, Polizeli M L. J. Ind. Microbiol. Biotechnol., 2008, 35: 17.

[19]

Bhatti H N, Rashid M H, Nawaz R, Asgher M, Perveen R, Jabbar A. Food Chem., 2007, 103: 338.

[20]

Sangeeta N, Banerjee R. Food Res. Int., 2009, 42: 443.

[21]

Soni K S, Gupta K J. Process Biochem., 2003, 39: 185.

[22]

Nguyen Q D, Rezessy-Szabo J M, Claeysssens M, Stals I, Hoschke A. Enzyme Microb. Technol., 2002, 31: 345.

[23]

Dock C, Hess M, Antranikian G. Appl. Microbiol. Biotechnol., 2008, 78: 105.

[24]

Norouzian D, Akbarzadeh A, Scharer J M, Young M M. Biotechnol. Adv., 2006, 24: 80.

[25]

Wallis G L F, Swift R J, Hemming F W, Trinci A P J, Peberdy J F. Biochim. Biophys. Acta, 1999, 1472: 576.

[26]

Jafari-Aghdam J, Khajeh K, Ranjbar B, Nemat-Gorgani M. Biochim. Biophys. Acta, 2005, 1750: 61.

[27]

Marín-Navarro J, Polaina J. Appl. Microbiol. Biotechnol., 2011, 89: 1267.

[28]

Wang P P, Yu G L, Jiao G L, Zhao X, Li J, Chai W G. Chem. J. Chinese Universities, 2012, 33(6): 1233.

[29]

Pazure J, Knull H R, Cepure A. Carbohyd. Res., 1971, 20: 83.

[30]

Wallis G L F, Swift R J, Hemming F W, Trinci A P J, Peberdy J F. Biochim. Biophys. Acta, 1999, 1472: 576.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/